Aleksander Jaworski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5820586/publications.pdf

Version: 2024-02-01

40 papers 1,012 citations

394421 19 h-index 30 g-index

46 all docs

46 docs citations

46 times ranked 1006 citing authors

#	Article	IF	Citations
1	Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose, 2020, 27, 3707-3725.	4.9	91
2	Selective Control of Composition in Prussian White for Enhanced Material Properties. Chemistry of Materials, 2019, 31, 7203-7211.	6.7	86
3	Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H ₂ O ₂ from Seawater. Journal of the American Chemical Society, 2022, 144, 2603-2613.	13.7	80
4	Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2012, 14, 15866.	2.8	64
5	Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc–air batteries. Applied Catalysis B: Environmental, 2021, 297, 120448.	20.2	64
6	Compositionâ€Property‧tructure Correlations of Scandium Aluminosilicate Glasses Revealed by Multinuclear ⁴⁵ <scp><scp>Sc</scp></scp> , ²⁷ <scp><scp>Al</scp></scp> , and ²⁹ <scp><scp>Si</scp></scp> Solid‧tate <scp>NMR</scp> . Journal of the American Ceramic Society, 2012, 95, 2545-2553.	3.8	55
7	Direct ¹⁷ O NMR experimental evidence for Al–NBO bonds in Si-rich and highly polymerized aluminosilicate glasses. Physical Chemistry Chemical Physics, 2015, 17, 18269-18272.	2.8	39
8	Observing an Antisense Drug Complex in Intact Human Cells by inâ€Cell NMR Spectroscopy. ChemBioChem, 2019, 20, 2474-2478.	2.6	38
9	Nature of Chemisorbed CO ₂ in Zeolite A. Journal of Physical Chemistry C, 2019, 123, 21497-21503.	3.1	34
10	Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catalysis, 2021, 11, 14087-14101.	11.2	33
11	Scandium and Yttrium Environments in Aluminosilicate Glasses Unveiled by ⁴⁵ Sc/ ⁸⁹ Y NMR Spectroscopy and DFT Calculations: What Structural Factors Dictate the Chemical Shifts?. Journal of Physical Chemistry C, 2017, 121, 18815-18829.	3.1	32
12	Exploring the Origins of Improved Photocurrent by Acidic Treatment for Quaternary Tantalum-Based Oxynitride Photoanodes on the Example of CaTaO ₂ N. Journal of Physical Chemistry C, 2020, 124, 152-160.	3.1	28
13	Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon: Atomic Level Understanding of Catalytic Activity by ¹⁵ N NMR Spectroscopy. Chemistry of Materials, 2020, 32, 7263-7273.	6.7	28
14	Hydride Reduction of BaTiO ₃ â^' Oxyhydride Versus O Vacancy Formation. ACS Omega, 2018, 3, 11426-11438.	3 . 5	27
15	Chitosan Deposited onto Fumed Silica Surface as Sustainable Hybrid Biosorbent for Acid Orange 8 Dye Capture: Effect of Temperature in Adsorption Equilibrium and Kinetics. Journal of Physical Chemistry C, 2020, 124, 15312-15323.	3.1	25
16	Direct Solar Energy-Mediated Synthesis of Tertiary Benzylic Alcohols Using a Metal-Free Heterogeneous Photocatalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 530-540.	6.7	25
17	Glycine-functionalized silica as sorbent for cobalt(II) and nickel(II) recovery. Applied Surface Science, 2020, 530, 147299.	6.1	22
18	Toward Sustainable Li-Ion Battery Recycling: Green Metal–Organic Framework as a Molecular Sieve for the Selective Separation of Cobalt and Nickel. ACS Sustainable Chemistry and Engineering, 2021, 9, 9770-9778.	6.7	22

#	Article	IF	Citations
19	LignoPhot: Conversion of hydrolysis lignin into the photoactive hybrid lignin/Bi4O5Br2/BiOBr composite for simultaneous dyes oxidation and Co2+ and Ni2+ recycling. Chemosphere, 2021, 279, 130538.	8.2	21
20	Dynamics of Hydride Ions in Metal Hydride-Reduced BaTiO ₃ Samples Investigated with Quasielastic Neutron Scattering. Journal of Physical Chemistry C, 2019, 123, 2019-2030.	3.1	19
21	Local energy decomposition analysis and molecular properties of encapsulated methane in fullerene (CH ₄ @C ₆₀). Physical Chemistry Chemical Physics, 2021, 23, 21554-21567.	2.8	19
22	Tailored Hydrophobic/Hydrophilic Lignin Coatings on Mesoporous Silica for Sustainable Cobalt(II) Recycling. ACS Sustainable Chemistry and Engineering, 2020, 8, 16262-16273.	6.7	18
23	Cellulose Nanocrystals from Postconsumer Cotton and Blended Fabrics: A Study on Their Properties, Chemical Composition, and Process Efficiency. ACS Sustainable Chemistry and Engineering, 2022, 10, 3787-3798.	6.7	17
24	Resolving Dirac electrons with broadband high-resolution NMR. Nature Communications, 2020, 11, 1285.	12.8	13
25	Probing Molecular Motions in Metal–Organic Frameworks by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2021, 143, 17947-17952.	13.7	12
26	Synthesis and Physical Properties of the Oxofluoride Cu2(SeO3)F2. Inorganic Chemistry, 2018, 57, 4640-4648.	4.0	11
27	Chemisorption of CO2 on diaminated silica as bicarbonates and different types of carbamate ammonium ion pairs. Materials Advances, 2021, 2, 448-454.	5 . 4	10
28	Mysterious SiB ₃ : Identifying the Relation between \hat{l} ±- and \hat{l} 2-SiB ₃ . ACS Omega, 2019, 4, 18741-18759.	3.5	9
29	The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate. Journal of Materials Chemistry A, 2020, 8, 6360-6371.	10.3	9
30	Artefact-free broadband 2D NMR for separation of quadrupolar and paramagnetic shift interactions. Solid State Nuclear Magnetic Resonance, 2019, 101, 51-62.	2.3	8
31	Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant ¹⁵ N NMR spectroscopy. Dalton Transactions, 2021, 50, 6857-6866.	3.3	8
32	Temperature-Driven Chemical Segregation in Co-Free Li-Rich-Layered Oxides and Its Influence on Electrochemical Performance. Chemistry of Materials, 2022, 34, 3637-3647.	6.7	8
33	Structural Properties of NdTiO2+xN1–x and Its Application as Photoanode. Inorganic Chemistry, 2021, 60, 919-929.	4.0	7
34	Separation of quadrupolar and paramagnetic shift interactions with TOP TMAS/MQMAS in solidâ€state lighting phosphors. Magnetic Resonance in Chemistry, 2020, 58, 1055-1070.	1.9	6
35	The Structure, Morphology, and Complex Permittivity of Epoxy Nanodielectrics with In Situ Synthesized Surface-Functionalized SiO2. Polymers, 2021, 13, 1469.	4.5	6
36	Trapping of different stages of BaTiO ₃ reduction with LiH. RSC Advances, 2020, 10, 35356-35365.	3.6	5

#	Article	IF	CITATIONS
37	CeTiO ₂ N oxynitride perovskite: paramagnetic ¹⁴ N MAS NMR without paramagnetic shifts. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 275-280.	0.7	4
38	Barium Titanium Oxynitride from Ammonia-Free Nitridation of Reduced BaTiO3. Inorganics, 2021, 9, 62.	2.7	3
39	¹⁴ N, ¹³ C, and ¹¹⁹ Sn solid-state NMR characterization of tin(II) carbodiimide Sn(NCN). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 745-750.	0.7	3
40	Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Physical Chemistry Chemical Physics, 2022, 24, 15230-15244.	2.8	3