Ying Ying Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5820585/ying-ying-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33 5,151 19 37 g-index

37 citations 6 5.2 L-index

#	Paper	IF	Citations
33	Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. <i>ACS Nano</i> , 2008 , 2, 230°	1-5 6. ₇	1231
32	Raman spectroscopy and imaging of graphene. <i>Nano Research</i> , 2008 , 1, 273-291	10	989
31	Raman Studies of Monolayer Graphene: The Substrate Effect. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10637-10640	3.8	567
30	Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. <i>Small</i> , 2010 , 6, 195-200	11	521
29	Interference enhancement of Raman signal of graphene. <i>Applied Physics Letters</i> , 2008 , 92, 043121	3.4	263
28	Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12602-12605	3.8	226
27	Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. <i>Physical Review B</i> , 2008 , 77,	3.3	223
26	The effect of vacuum annealing on graphene. Journal of Raman Spectroscopy, 2010, 41, 479-483	2.3	194
25	FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. <i>Advanced Functional Materials</i> , 2010 , 20, 3504-3509	9 ^{15.6}	138
24	Stacking-dependent optical conductivity of bilayer graphene. ACS Nano, 2010, 4, 4074-80	16.7	122
23	Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. <i>Applied Physics Letters</i> , 2011 , 98, 193113	3.4	115
22	G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. <i>Physical Review B</i> , 2009 , 80,	3.3	104
21	Large-Scale Synthesis of Bi-layer Graphene in Strongly Coupled Stacking Order. <i>Advanced Functional Materials</i> , 2011 , 21, 911-917	15.6	85
20	Thickness identification of two-dimensional materials by optical imaging. <i>Nanotechnology</i> , 2012 , 23, 49	57.143	77
19	Gold on graphene as a substrate for surface enhanced Raman scattering study. <i>Applied Physics Letters</i> , 2010 , 97, 163111	3.4	73
18	Polarization-Sensitive Self-Powered Type-II GeSe/MoS van der Waals Heterojunction Photodetector. <i>ACS Applied Materials & Description</i> (12, 15406-15413)	9.5	61
17	Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties. <i>Applied Physics Letters</i> , 2010 , 96, 023106	3.4	43

LIST OF PUBLICATIONS

16	Uniform Decoration of Reduced Graphene Oxide Sheets with Gold Nanoparticles. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-8	3.5	26
15	In-plane optical anisotropy in ReS flakes determined by angle-resolved polarized optical contrast spectroscopy. <i>Nanoscale</i> , 2019 , 11, 20199-20205	7.7	19
14	Temperature-dependent Raman spectroscopy studies of 18-layer WSe2. <i>Nano Research</i> , 2020 , 13, 591-5	59150	18
13	Measurement of interfacial thermal conductance of few-layer MoS2 supported on different substrates using Raman spectroscopy. <i>Journal of Applied Physics</i> , 2020 , 127, 104301	2.5	16
12	Raman intensity enhancement of molecules adsorbed onto HfS flakes up to 200 layers. <i>Nanoscale</i> , 2019 , 11, 2179-2185	7.7	12
11	Interference Effect on Photoluminescence Intensity in GaSe up to 200 Layers. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 10185-10191	3.8	7
10	Structural evolution in CVD graphene chemically oxidized by sulphuric acid. <i>Journal of Raman Spectroscopy</i> , 2015 , 46, 283-286	2.3	4
9	Raman spectroscopy study of twisted tetralayer graphene. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 668-673	2.3	4
8	Atomically flat HfO2 layer fabricated by mild oxidation HfS2 with controlled number of layers. Journal of Applied Physics, 2020 , 127, 214303	2.5	3
7	Raman spectroscopy studies of black phosphorus <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2022 , 271, 120861	4.4	3
6	Molybdenum Oxide/Tungsten Oxide Nano-heterojunction with Improved Surface-Enhanced Raman Scattering Performance. <i>ACS Applied Materials & Acs Accordance & Acs Applied Materials & Accordance & Accorda</i>	9.5	3
5	Determination of concentration of adsorbed molecules by Raman spectroscopy and optical imaging. <i>Journal of Applied Physics</i> , 2019 , 125, 244305	2.5	1
4	Photo-oxidation Dynamics in GaSe Flakes Probed through Temporal Evolution of Raman Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 25608-25614	3.8	1
3	Novel synthesis method and microstructure evolution of Ti3C2(OH)2/K2Ti8O17 nanocomposites as an effective surface enhanced Raman scattering substrate. <i>Ceramics International</i> , 2021 , 47, 19864-198	72 .1	1
2	High-sensitive detection of fluorene by ambient ionization mass spectrometry. <i>New Journal of Chemistry</i> ,	3.6	1
1	Tunable anisotropy in ReS2 flakes achieved by Ar+ ion bombardment probed by polarized Raman spectroscopy. <i>Applied Physics Letters</i> , 2021 , 119, 053104	3.4	O