
Rebecca R Rico-Hesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origins of Dengue Type 2 Viruses Associated with Increased Pathogenicity in the Americas. Virology, 1997, 230, 244-251.	2.4	557
2	ICTV Virus Taxonomy Profile: Flaviviridae. Journal of General Virology, 2017, 98, 2-3.	2.9	537
3	Dengue Virus Structural Differences That Correlate with Pathogenesis. Journal of Virology, 1999, 73, 4738-4747.	3.4	504
4	Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology, 1990, 174, 479-493.	2.4	488
5	Geographic distribution of wild poliovirus type 1 genotypes. Virology, 1987, 160, 311-322.	2.4	352
6	Microevolution and virulence of dengue viruses. Advances in Virus Research, 2003, 59, 315-341.	2.1	313
7	Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 2017, 98, 2106-2112.	2.9	264
8	Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. Lancet, The, 1996, 348, 436-440.	13.7	259
9	Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2. Journal of Virology, 2010, 84, 9227-9239.	3.4	189
10	Selection for Virulent Dengue Viruses Occurs in Humans and Mosquitoes. Journal of Virology, 2005, 79, 853-859.	3.4	184
11	Mosquito Bite Delivery of Dengue Virus Enhances Immunogenicity and Pathogenesis in Humanized Mice. Journal of Virology, 2012, 86, 7637-7649.	3.4	175
12	American Genotype Structures Decrease Dengue Virus Output from Human Monocytes and Dendritic Cells. Journal of Virology, 2003, 77, 3929-3938.	3.4	163
13	AEDES AEGYPTI VECTORIAL CAPACITY IS DETERMINED BY THE INFECTING GENOTYPE OF DENGUE VIRUS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 886-892.	1.4	149
14	Dengue Fever in Humanized NOD/SCID Mice. Journal of Virology, 2005, 79, 13797-13799.	3.4	147
15	Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. Journal of General Virology, 2016, 97, 2894-2907.	2.9	139
16	A new Genotype of Japanese Encephalitis Virus from Indonesia. American Journal of Tropical Medicine and Hygiene, 1992, 47, 61-69.	1.4	128
17	EFFICIENCY OF DENGUE SEROTYPE 2 VIRUS STRAINS TO INFECT AND DISSEMINATE IN AEDES AEGYPTI. American Journal of Tropical Medicine and Hygiene, 2003, 68, 539-544.	1.4	120
18	Differential Susceptibility of <i>Aedes aegypti</i> to Infection by the American and Southeast Asian Genotypes of Dengue Type 2 Virus. Vector-Borne and Zoonotic Diseases. 2001. 1. 159-168.	1.5	117

REBECCA R RICO-HESSE

#	Article	IF	CITATIONS
19	Humanized Mice Show Clinical Signs of Dengue Fever according to Infecting Virus Genotype. Journal of Virology, 2009, 83, 8638-8645.	3.4	117
20	Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Scientific Reports, 2017, 7, 41389.	3.3	114
21	Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. American Journal of Tropical Medicine and Hygiene, 2006, 75, 886-92.	1.4	94
22	Dengue Virus Evolution and Virulence Models. Clinical Infectious Diseases, 2007, 44, 1462-1466.	5.8	92
23	Phylogenetic analysis of alphaviruses in the venezuelan equine encephalitis complex and identification of the source of epizootic viruses. Virology, 1992, 191, 282-290.	2.4	86
24	Discovery, X-ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. Journal of the American Chemical Society, 2019, 141, 6832-6836.	13.7	83
25	Molecular evolution of eastern equine encephalomyelitis virus in North America. Virology, 1991, 182, 774-784.	2.4	80
26	Models of dengue virus infection. Drug Discovery Today: Disease Models, 2006, 3, 97-103.	1.2	74
27	Dengue Virus Tropism in Humanized Mice Recapitulates Human Dengue Fever. PLoS ONE, 2011, 6, e20762.	2.5	73
28	High Genetic Divergence and Recombination in Arenaviruses from the Americas. Virology, 2002, 304, 274-281.	2.4	72
29	Mosquito saliva alone has profound effects on the human immune system. PLoS Neglected Tropical Diseases, 2018, 12, e0006439.	3.0	71
30	Report of an NIAID workshop on dengue animal models. Vaccine, 2010, 28, 4229-4234.	3.8	65
31	Genetic Characterization and Phylogeny of SabiÃ _i Virus, an Emergent Pathogen in Brazil. Virology, 1996, 221, 318-324.	2.4	54
32	Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Neglected Tropical Diseases, 2019, 13, e0007837.	3.0	51
33	Hepadnavirus Infection in Captive Gibbons. Journal of Virology, 2000, 74, 2955-2959.	3.4	39
34	Recombination and flavivirus vaccines: a commentary. Vaccine, 2005, 23, 2956-2958.	3.8	37
35	Replication of Zika Virus in Human Prostate Cells: A Potential Source of Sexually Transmitted Virus. Journal of Infectious Diseases, 2018, 217, 538-547.	4.0	35
36	Variation in Vector Competence for Dengue Viruses Does Not Depend on Mosquito Midgut Binding Affinity. PLoS Neglected Tropical Diseases, 2011, 5, e1172.	3.0	34

REBECCA R RICO-HESSE

#	Article	IF	CITATIONS
37	Genetic Variation of Venezuelan Equine Encephalitis Virus Strains of the ID Variety in Colombia. American Journal of Tropical Medicine and Hygiene, 1988, 38, 195-204.	1.4	34
38	Sylvatic Dengue Viruses Share the Pathogenic Potential of Urban/Endemic Dengue Viruses. Journal of Virology, 2010, 84, 3726-3728.	3.4	24
39	Synthesis, Structure–Activity Relationships, and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B–NS3 Protease. Journal of Medicinal Chemistry, 2021, 64, 2777-2800.	6.4	24
40	Characterization of a Zika Virus Isolate from Colombia. PLoS Neglected Tropical Diseases, 2016, 10, e0005019.	3.0	24
41	Monoclonal Antibodies Define Antigenic Variation in the ID Variety of Venezuelan Equine Encephalitis Virus. American Journal of Tropical Medicine and Hygiene, 1988, 38, 187-194.	1.4	24
42	Molecular Phylogeny of Guanarito Virus, an Emerging Arenavirus Affecting Humans. American Journal of Tropical Medicine and Hygiene, 1995, 53, 1-6.	1.4	24
43	Dengue virus markers of virulence and pathogenicity. Future Virology, 2009, 4, 581-589.	1.8	21
44	Molecular Epidemiology of Wild Poliovirus Transmission. , 1990, , 199-221.		12
45	Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Neglected Tropical Diseases, 2021, 15, e0009427.	3.0	11
46	Venezuelan Equine Encephalomyelitis. Veterinary Clinics of North America Equine Practice, 2000, 16, 553-563.	0.7	7
47	Phylogenetic analysis of the envelope protein (domain III) of dengue 4 viruses. Salud Publica De Mexico, 2002, 44, 228-236.	0.4	5
48	IP-10 and CXCR3 signaling inhibit Zika virus replication in human prostate cells. PLoS ONE, 2020, 15, e0244587.	2.5	3
49	Viral evolution and epidemiology. Current Opinion in Infectious Diseases, 1997, 10, 367-371.	3.1	2
50	Editorial Overview: Virus–vector interactions. Current Opinion in Virology, 2016, 21, v-vi.	5.4	0