Laurence R Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5819782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vestibular Perceptual Thresholds in Older Adults With and Without Age-related Hearing Loss. Ear and Hearing, 2022, 43, 420-435.	2.1	7
2	Long-duration head down bed rest as an analog of microgravity: Effects on the static perception of upright. Journal of Vestibular Research: Equilibrium and Orientation, 2022, 32, 325-340.	2.0	3
3	Body Orientation Affects the Perceived Size of Objects. Perception, 2022, 51, 25-36.	1.2	6
4	Changes in the perceived size of the body following exposure to distorted self-body images. Royal Society Open Science, 2022, 9, 210722.	2.4	2
5	Age-related changes to vestibular heave and pitch perception and associations with postural control. Scientific Reports, 2022, 12, 6426.	3.3	6
6	Can People Infer Distance in a 2D Scene Using the Visual Size and Position of an Object?. Vision (Switzerland), 2022, 6, 25.	1.2	2
7	The role of cognitive factors and personality traits in the perception of illusory self-motion (vection). Attention, Perception, and Psychophysics, 2021, 83, 1804-1817.	1.3	15
8	When gravity is not where it should be: How perceived orientation affects visual self-motion processing. PLoS ONE, 2021, 16, e0243381.	2.5	9
9	Object speed perception during lateral visual self-motion. Attention, Perception, and Psychophysics, 2021, , 1.	1.3	3
10	The perceived size of the implicit representation of the dorsum and palm of the hand. PLoS ONE, 2020, 15, e0230624.	2.5	3
11	The influence of rhythm on detection of auditory and vibrotactile asynchrony. Experimental Brain Research, 2020, 238, 825-832.	1.5	3
12	Does the vestibular system exert specific or general influences on cognitive processes?. Cognitive Neuropsychology, 2020, 37, 430-432.	1.1	1
13	The effect of training on the perceived approach angle in visual vertical heading judgements in a virtual environment. Experimental Brain Research, 2020, 238, 1861-1869.	1.5	5
14	Seeing your own or someone else's hand moving in accordance with your action: The neural interaction of agency and hand identity. Human Brain Mapping, 2020, 41, 2474-2489.	3.6	30
15	Perceiving jittering self-motion in a field of lollipops from ages 4 to 95. PLoS ONE, 2020, 15, e0241087.	2.5	1
16	Steady-state visually evoked potentials reveal partial size constancy in early visual cortex. Journal of Vision, 2019, 19, 8.	0.3	14
17	Visual feedback is not necessary for recalibrating the vestibular contribution to the dynamic phase of a perturbation recovery response. Experimental Brain Research, 2019, 237, 2185-2196.	1.5	5
18	The Representation of Body Size: Variations With Viewpoint and Sex. Frontiers in Psychology, 2019, 10, 2805.	2.1	5

#	Article	IF	CITATIONS
19	Updating the position of eccentric targets during visually-induced lateral motion. Journal of Vision, 2019, 19, 302.	0.3	Ο
20	The Weighting of Cues to Upright Following Stroke With and Without a History of Pushing. Canadian Journal of Neurological Sciences, 2018, 45, 405-414.	0.5	3
21	Vestibular–somatosensory interactions affect the perceived timing of tactile stimuli. Experimental Brain Research, 2018, 236, 2877-2885.	1.5	7
22	The effect of hand position on perceived finger orientation in left- and right-handers. Experimental Brain Research, 2017, 235, 3683-3693.	1.5	4
23	Voluntary and Involuntary Movements Widen the Window of Subjective Simultaneity. I-Perception, 2017, 8, 204166951771929.	1.4	18
24	The effect of long-term exposure to microgravity on the perception of upright. Npj Microgravity, 2017, 3, 3.	3.7	38
25	Tactile Flow Overrides Other Cues To Self Motion. Scientific Reports, 2017, 7, 1059.	3.3	8
26	Vision can recalibrate the vestibular reafference signal used to re-establish postural equilibrium following a platform perturbation. Experimental Brain Research, 2017, 235, 407-414.	1.5	13
27	Multisensory integration is independent of perceived simultaneity. Experimental Brain Research, 2017, 235, 763-775.	1.5	25
28	Using optic flow in the far peripheral field. Journal of Vision, 2017, 17, 3.	0.3	14
29	Predicting the Multisensory Consequences of One's Own Action: BOLD Suppression in Auditory and Visual Cortices. PLoS ONE, 2017, 12, e0169131.	2.5	51
30	Perceived face size in healthy adults. PLoS ONE, 2017, 12, e0177349.	2.5	14
31	Disambiguating the Stream/Bounce Illusion WithÂInference. Multisensory Research, 2016, 29, 453-464.	1.1	15
32	Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework. Frontiers in Computational Neuroscience, 2016, 10, 62.	2.1	3
33	Perceived finger orientation is biased towards functional task spaces. Experimental Brain Research, 2016, 234, 3565-3574.	1.5	3
34	Inducing ownership over an â€~other' perspective with a visuo-tactile manipulation. Experimental Brain Research, 2016, 234, 3633-3639.	1.5	8
35	Testing Tactile Masking between the Forearms. Journal of Visualized Experiments, 2016, , e53733.	0.3	1
36	Long-range tactile masking occurs in the postural body schema. Experimental Brain Research, 2016, 234, 569-575.	1.5	3

#	Article	IF	CITATIONS
37	Left-handers show no self-advantage in detecting a delay in visual feedback concerning an active movement. Experimental Brain Research, 2016, 234, 1915-1923.	1.5	5
38	Which Direction Is up for a High Pitch?. Multisensory Research, 2016, 29, 113-132.	1.1	15
39	The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates. PLoS ONE, 2015, 10, e0145528.	2.5	32
40	How our body influences our perception of the world. Frontiers in Psychology, 2015, 6, 819.	2.1	40
41	Bodily illusions disrupt tactile sensations Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 42-49.	0.9	6
42	Disrupting Vestibular Activity Disrupts Body Ownership. Multisensory Research, 2015, 28, 581-590.	1.1	12
43	Introduction to Vestibular Cognition Special Issue: Progress in Vestibular Cognition. Multisensory Research, 2015, 28, 393-396.	1.1	6
44	The role of the viewpoint on body ownership. Experimental Brain Research, 2015, 233, 1053-1060.	1.5	14
45	Audiovisual Delay as a Novel Cue to Visual Distance. PLoS ONE, 2015, 10, e0141125.	2.5	2
46	How Much Gravity Is Needed to Establish the Perceptual Upright?. PLoS ONE, 2014, 9, e106207.	2.5	26
47	lan Porteous Howard (1927–2013) American Psychologist, 2014, 69, 301-301.	4.2	Ο
48	The Effect of Blur on the Perception of Up. Optometry and Vision Science, 2014, 91, 103-110.	1.2	3
49	Perceived distance depends on the orientation of both the body and the visual environment. Journal of Vision, 2014, 14, 17-17.	0.3	26
50	Optimal Audiovisual Integration in People with One Eye. Multisensory Research, 2014, 27, 173-188.	1.1	12
51	The State of the Art of Sensory Substitution. Multisensory Research, 2014, 27, 265-269.	1.1	9
52	Contralateral tactile masking between forearms. Experimental Brain Research, 2014, 232, 821-826.	1.5	22
53	Vibrotactile masking through the body. Experimental Brain Research, 2014, 232, 2859-2863.	1.5	14
54	Segmented Space: Measuring Tactile Localisation in Body Coordinates. Multisensory Research, 2013, 26, 3-18.	1.1	5

#	Article	IF	CITATIONS
55	International Multisensory Research Forum 2012 Meeting Special Issue. Multisensory Research, 2013, 26, 287-289.	1.1	5
56	Editorial on the Launch of Multisensory Research; A Journal of Scientific Research on All Aspects of Multisensory Processing. Multisensory Research, 2013, 26, 1-2.	1.1	4
57	The contribution of sound in determining the perceptual upright. Multisensory Research, 2013, 26, 125.	1.1	1
58	Asymmetrical representation of body orientation. Journal of Vision, 2013, 13, 3-3.	0.3	14
59	Allocentric visual cues influence mental transformation of bodies. Journal of Vision, 2013, 13, 14-14.	0.3	6
60	The relative contributions of radial and laminar optic flow to the perception of linear self-motion. Journal of Vision, 2012, 12, 7-7.	0.3	16
61	Detecting delay in visual feedback of an action as a monitor of self recognition. Experimental Brain Research, 2012, 222, 389-397.	1.5	29
62	Reference frames for coding touch location depend on the task. Experimental Brain Research, 2012, 222, 437-445.	1.5	32
63	Living with One Eye: Plasticity in Visual and Auditory Systems. , 2012, , 94-113.		7
64	Perceived size change induced by audiovisual temporal delays. Experimental Brain Research, 2012, 216, 457-462.	1.5	13
65	Sensory compensation in sound localization in people with one eye. Experimental Brain Research, 2012, 216, 565-574.	1.5	35
66	The contribution of different parts of the visual field to the perception of upright. Vision Research, 2011, 51, 2207-2215.	1.4	8
67	Perceived touch location is coded using a gaze signal. Experimental Brain Research, 2011, 213, 229-234.	1.5	61
68	Temporal processing of active and passive head movement. Experimental Brain Research, 2011, 214, 27-35.	1.5	42
69	Enhancing visual cues to orientation. Progress in Brain Research, 2011, 191, 133-142.	1.4	28
70	Editorial. Seeing and Perceiving, 2011, 24, 201.	0.3	0
71	Perceptual Upright: The Relative Effectiveness of Dynamic and Static Images Under Different Gravity States. Seeing and Perceiving, 2011, 24, 53-64.	0.3	18
72	The human visual system's assumption that light comes from above is weak. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12551-12553.	7.1	55

#	Article	lF	CITATIONS
73	Predicting the position of moving audiovisual stimuli. Experimental Brain Research, 2010, 203, 249-260.	1.5	15
74	Touch used to guide action is partially coded in a visual reference frame. Experimental Brain Research, 2010, 203, 615-620.	1.5	34
75	How different types of scenes affect the Subjective Visual Vertical (SVV) and the Perceptual Upright (PU). Vision Research, 2010, 50, 1720-1727.	1.4	23
76	Multisensory determinants of orientation perception: taskâ€specific sex differences. European Journal of Neuroscience, 2010, 31, 1899-1907.	2.6	34
77	Frames of reference for biological motion and face perception. Journal of Vision, 2010, 10, 22-22.	0.3	18
78	Where's the Floor?. Seeing and Perceiving, 2010, 23, 81-88.	0.3	4
79	The unassisted visual system on earth and in space. Journal of Vestibular Research: Equilibrium and Orientation, 2010, 20, 25-30.	2.0	2
80	Space Constancy vs Shape Constancy. Seeing and Perceiving, 2010, 23, 385-399.	0.3	2
81	Multisensory determinants of orientation perception in Parkinson's disease. Neuroscience, 2010, 167, 1138-1150.	2.3	60
82	Mechanisms of simultaneity constancy. , 2010, , 232-253.		20
83	Sounds can affect visual perception mediated primarily by the parvocellular pathway. Visual Neuroscience, 2009, 26, 477-486.	1.0	19
84	How long do intrinsic and extrinsic visual cues take to exert their effect on the perceptual upright?. Vision Research, 2009, 49, 2131-2139.	1.4	7
85	The effect of altered gravity states on the perception of orientation. Experimental Brain Research, 2009, 194, 647-660.	1.5	42
86	Perceived timing of vestibular stimulation relative to touch, light and sound. Experimental Brain Research, 2009, 198, 221-231.	1.5	84
87	Eye position affects the perceived location of touch. Experimental Brain Research, 2009, 198, 403-410.	1.5	82
88	The primal role of the vestibular system in determining musical rhythm. Cortex, 2009, 45, 35-43.	2.4	93
89	The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Experimental Brain Research, 2008, 186, 517-524.	1.5	130
90	The coding of perceived eye position. Experimental Brain Research, 2008, 187, 429-437.	1.5	9

#	Article	IF	CITATIONS
91	Visuotactile apparent motion. Perception & Psychophysics, 2008, 70, 807-817.	2.3	25
92	The relative timing of active and passive touch. Brain Research, 2008, 1242, 54-58.	2.2	30
93	Perceived self-orientation in allocentric and egocentric space: Effects of visual and physical tilt on saccadic and tactile measures. Brain Research, 2008, 1242, 231-243.	2.2	34
94	The influence of retinal and extra-retinal motion cues on perceived object motion during self-motion. Journal of Vision, 2008, 8, 5-5.	0.3	25
95	Measurement of oscillopsia induced by vestibular Coriolis stimulation. Journal of Vestibular Research: Equilibrium and Orientation, 2008, 17, 289-299.	2.0	4
96	Multimodal Ternus: Visual, Tactile, and Visuo — Tactile Grouping in Apparent Motion. Perception, 2007, 36, 1455-1464.	1.2	24
97	Auditory–visual temporal integration measured by shifts in perceived temporal location. Neuroscience Letters, 2007, 417, 219-224.	2.1	22
98	Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research, 2007, 180, 35-48.	1.5	103
99	The subjective visual vertical and the perceptual upright. Experimental Brain Research, 2006, 173, 612-622.	1.5	177
100	Flash lag in depth. Vision Research, 2006, 46, 2735-2742.	1.4	13
101	The use of visual and nonvisual cues in updating the perceived position of the world during translation. , 2005, 5666, 462.		Ο
102	The relative role of visual and non-visual cues in determining the perceived direction of "up― Experiments in parabolic flight. Acta Astronautica, 2005, 56, 1025-1032.	3.2	26
103	Gravity and perceptual stability during translational head movement on earth and in microgravity. Acta Astronautica, 2005, 56, 1033-1040.	3.2	4
104	Is an Internal Model of Head Orientation Necessary for Oculomotor Control?. Annals of the New York Academy of Sciences, 2005, 1039, 314-324.	3.8	15
105	Simultaneity constancy: detecting events with touch and vision. Experimental Brain Research, 2005, 166, 465-473.	1.5	77
106	Perceiving a stable world during active rotational and translational head movements. Experimental Brain Research, 2005, 163, 388-399.	1.5	57
107	Simultaneity Constancy. Perception, 2004, 33, 1049-1060.	1.2	81
108	Shape-from-Shading Depends on Visual, Gravitational, and Body-Orientation Cues. Perception, 2004, 33, 1453-1461.	1.2	53

#	Article	IF	CITATIONS
109	Levels of Analysis of the Vestibulo-Ocular Reflex: A Postmodern Approach. , 2003, , 279-294.		0
110	A Threeâ€Channel Model for Generating the Vestibuloâ€Ocular Reflex in Each Eye. Annals of the New York Academy of Sciences, 2002, 956, 537-542.	3.8	0
111	Humans can use optic flow to estimate distance of travel. Vision Research, 2001, 41, 213-219.	1.4	114
112	The visual consequences of deviations in the orientation of the axis of rotation of the human vestibulo-ocular reflex. Vision Research, 2001, 41, 3271-3281.	1.4	13
113	Visual and non-visual cues in the perception of linear self motion. Experimental Brain Research, 2000, 135, 12-21.	1.5	177
114	Interactions between first- and second-order motion revealed by optokinetic nystagmus. Experimental Brain Research, 2000, 130, 67-72.	1.5	24
115	Head tilt during driving. Ergonomics, 1999, 42, 740-746.	2.1	32
116	Auditory Stimulus Detection is Not Suppressed during Saccadic Eye Movements. Perception, 1996, 25, 999-1004.	1.2	14
117	Sensitivity to full-field visual movement compatible with head rotation: Variations with eye-in-head position. Visual Neuroscience, 1996, 13, 277-282.	1.0	Ο
118	Human eye movement response to z-axis linear acceleration: the effect of varying the phase relationships between visual and vestibular inputs. Experimental Brain Research, 1995, 103, 256-266.	1.5	11
119	Sensitivity to full-field visual movement compatible with head rotation: Variations among axes of rotation. Visual Neuroscience, 1995, 12, 743-754.	1.0	8
120	Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae). Journal of Insect Behavior, 1994, 7, 553-567.	0.7	47
121	Keeping track of visual codes that move from cell to cell during eye movements. Behavioral and Brain Sciences, 1994, 17, 265-265.	0.7	0
122	The effect of gravity on the resting position of the cat's eye. Experimental Brain Research, 1993, 96, 107-116.	1.5	9
123	Horizontal saccades to dichoptically presented targets of differing disparities. Vision Research, 1993, 33, 1001-1010.	1.4	16
124	Brain stem and cortical contributions to the generation of horizontal optokinetic eye movements in humans. Visual Neuroscience, 1993, 10, 247-259.	1.0	21
125	Interactions between Otoliths and Vision Revealed by the Response to Z-Axis Linear Movements. Annals of the New York Academy of Sciences, 1992, 656, 898-900.	3.8	1
126	The Effect of Canal/Visual and Canal/Otolith Conflict on Type I Vestibular Nucleus Neurones. Acta Oto-Laryngologica, 1991, 111, 266-268.	0.9	1

#	Article	IF	CITATIONS
127	Auditory and visual neurons in the cat's superior colliculus selective for the direction of apparent motion stimuli. Brain Research, 1989, 490, 56-63.	2.2	44
128	The contribution of the horizontal semicircular canals to the response to off-vertical-axis rotation in the cat. Experimental Brain Research, 1988, 71, 147-52.	1.5	6
129	The eye movements evoked by a rotating linear acceleration vector in the cat depend on a central velocity storage mechanism. Brain Research, 1987, 437, 393-396.	2.2	6
130	Vestibular and optokinetic eye movements evoked in the cat by rotation about a tilted axis. Experimental Brain Research, 1987, 66, 522-532.	1.5	74
131	Auditory compensation of the effects of visual deprivation in the cat's superior colliculus. Experimental Brain Research, 1983, 50, 69-83.	1.5	77
132	Temporal and spatial response characteristics of the cat superior colliculus. Brain Research, 1981, 207, 73-94.	2.2	28
133	Modification of the balance and gain of the vestibulo-ocular reflex in the cat. Experimental Brain Research, 1981, 44, 57-70.	1.5	21
134	Moving and the motion after-effect. Nature, 1981, 293, 139-141.	27.8	61
135	The superior colliculus and movements of the head and eyes in cats. Journal of Physiology, 1980, 300, 367-391.	2.9	185
136	Eye movement in strabismic cats. Nature, 1980, 286, 64-65.	27.8	36
137	Integration of visual and auditory space in the mammalian superior colliculus. Nature, 1980, 288, 56-59.	27.8	109
138	Abolition of optokinetic nystagmus in the cat. Science, 1980, 210, 91-92.	12.6	44
139	Contrast sensitivity and acuity of a conscious cat measured by the occipital evoked potential. Vision Research, 1978, 18, 175-178.	1.4	28
140	The effects of remote retinal stimulation on the responses of cat retinal ganglion cells Journal of Physiology, 1977, 269, 177-194.	2.9	80
141	MacIlwain's peripheral shift effect. Neuroscience Letters, 1976, 3, 98-99.	2.1	0