Ugo Azzena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5819698/publications.pdf

Version: 2024-02-01

47	771	16	25
papers	citations	h-index	g-index
50	50	50	600 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem, 2019, 12, 40-70.	6.8	100
2	Electron-Transfer-Induced Reductive Cleavage of Phthalans:Â Reactivity and Synthetic Applications. Journal of Organic Chemistry, 1996, 61, 4913-4919.	3.2	53
3	Electron-transfer-induced reductive demethoxylation of anisole: evidence for cleavage of a radical anion. Journal of Organic Chemistry, 1992, 57, 1444-1448.	3.2	52
4	Chemoselective efficient synthesis of functionalized \hat{l}^2 -oxonitriles through cyanomethylation of Weinreb amides. Organic and Biomolecular Chemistry, 2015, 13, 1969-1973.	2.8	41
5	Reductive Cleavage of Benzannelated Cyclic Ethers and Amines: Synthetic Applications. Tetrahedron, 2000, 56, 8375-8382.	1.9	31
6	A New Synthesis of 1-n-Alkyl-3,5-dimethoxybenzenes (Olivetol Dimethyl Ether and Homologs). Synthesis, 1989, 1989, 28-30.	2.3	30
7	Regioselective reductive demethoxylation of 3,4,5-trimethoxystilbenes. Tetrahedron, 2003, 59, 7961-7966.	1.9	28
8	Cyclopentyl methyl ether–NH ₄ X: a novel solvent/catalyst system for low impact acetalization reactions. Green Chemistry, 2015, 17, 3281-3284.	9.0	25
9	Single and double reductive cleavage of Cî—,O bonds of aromatic dimethyl acetals and ketals: Generation of benzylic mono- and dicarbanions. Tetrahedron Letters, 1994, 35, 6759-6762.	1.4	23
10	BH $<$ sub $>3<$ /sub $>-$ Promoted Stereoselective \hat{I}^2 -Lithiation of $<$ i $>N<$ /i $>-$ Alkyl-2-phenylaziridines. Journal of Organic Chemistry, 2011, 76, 2291-2295.	3.2	22
11	Reductive lithiation of arylalkyl methyl ethers. Tetrahedron, 1997, 53, 16205-16212.	1.9	21
12	Regioselective reductive electrophilic substitution of derivatives of 3,4,5-trimethoxybenzaldehyde. Journal of Organic Chemistry, 1992, 57, 3101-3106.	3.2	20
13	Generation and Reactivity of α-Amino-Substituted Arylmethyllithium Organometallics. Tetrahedron, 2000, 56, 3775-3780.	1.9	18
14	Reductive metalation of 1,2-diaryl-substituted ethenes: synthetic applications. Tetrahedron, 2005, 61, 8663-8668.	1.9	18
15	Tuning the Reducing Properties of 1,2-Diaryl-1,2-disodiumethanes. Journal of Organic Chemistry, 2009, 74, 8064-8070.	3.2	17
16	Metalation of arylmethyl alkyl ethers. Tetrahedron, 1998, 54, 12389-12398.	1.9	16
17	lon pairing effects on the regioselectivity of arylic versus benzylic C–O bond reductive cleavage: synthetic applications. Tetrahedron, 2007, 63, 11998-12006.	1.9	16
18	A green solvent approach to the chemistry of 1,2â€diarylâ€1,2â€disodioethanes. Applied Organometallic Chemistry, 2012, 26, 180-184.	3.5	16

#	Article	IF	CITATIONS
19	Generation of \hat{I}^3 -Oxy-Substituted Benzylithium Derivatives by Reductive Lithiation of 4-Phenyl-1,3-dioxanes. Synthesis, 1999, 1999, 664-668.	2.3	14
20	Silica Gel Stabilized Na and Na/K Alloys: Highly Effective, Versatile and Environmentally Friendly Reducing Agents. Synthesis, 2017, 49, 1931-1937.	2.3	14
21	Regioselectivity in the reductive cleavage of pyrogallol derivatives: reductive electrophilic substitution of acetals of 2,3-dimethoxyphenol. Journal of the Chemical Society Perkin Transactions 1, 1995, , 261.	0.9	13
22	Diastereoselective electrophilic substitution of \hat{l}_{\pm} -amino-substituted benzylic organometallics. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 360-365.	1.3	12
23	Electron-transfer-induced reductive cleavage of chlorinated aryloxyalkanoic acids. Tetrahedron, 2011, 67, 3360-3362.	1.9	12
24	Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues. Tetrahedron, 2013, 69, 207-211.	1.9	11
25	Computational NMR as Useful Tool for Predicting Structure and Stereochemistry of Fourâ€Membered Sulfur Heterocycles. European Journal of Organic Chemistry, 2016, 2016, 3252-3258.	2.4	11
26	A new and highly effective organometallic approach to 1,2-dehalogenations and related reactions. Journal of Organometallic Chemistry, 2007, 692, 3892-3900.	1.8	10
27	Active-sodium-promoted reductive cleavage of halogenated benzoic acids. Tetrahedron, 2010, 66, 9171-9174.	1.9	10
28	Diastereoselective electrophilic substitution of \hat{I}^3 -oxy-substituted benzyllithiums. Tetrahedron Letters, 2002, 43, 5137-5139.	1.4	9
29	Regioselectivity in arene-catalyzed reductive lithiation of acetals of chlorobenzaldehydes. Tetrahedron, 2006, 62, 1557-1563.	1.9	9
30	Reducing versus basic properties of 1,2-diaryl-1,2-disodioethanes. Tetrahedron, 2011, 67, 3470-3475.	1.9	8
31	Heterogeneous acidic catalysts for the tetrahydropyranylation of alcohols and phenols in green ethereal solvents. Beilstein Journal of Organic Chemistry, 2018, 14, 1655-1659.	2.2	8
32	Addressing Stereochemistry of Heterocyclic Compounds by DFT NMR Calculations. Chemistry of Heterocyclic Compounds, 2018, 54, 380-388.	1,2	8
33	The effect of topologically controlled coulombic interactions on the regioselectivity of the reductive cleavage of alkyl phenyl ethers. Journal of the Chemical Society Perkin Transactions II, 1996, , 2563.	0.9	7
34	Reductive lithiation of 1,3-dimethyl-2-arylimidazolidines. Tetrahedron, 2005, 61, 3177-3182.	1.9	7
35	Practical generation of 3,5-dimethoxybenzyllithium: application to the synthesis of 5-substituted-resorcinols. Applied Organometallic Chemistry, 2003, 17, 851-855.	3. 5	6
36	Reductive lithiation of alkoxy-substituted benzyl methyl ethers and connection with cross-coupling reactions. Tetrahedron, 2004, 60, 1617-1623.	1.9	6

#	Article	IF	CITATIONS
37	Benzylic Organometals via Reductive Metalation Procedures. Current Organic Chemistry, 2011, 15, 1006-1035.		6
38	Alkali Metal-mediated Synthesis of 1- and 4-Substituted N-Alkyl-1,2,3,4-tetrahydro- isoquinolines. Heterocycles, 2004, 63, 401.	0.7	5
39	Reducing properties of 1,2-diaryl-1,2-disodiumethanes. Tetrahedron Letters, 2006, 47, 1055-1058.	1.4	5
40	Direct metalation of methoxymethyl arylmethyl ethers: A tin-free approach to the generation of α-alkoxyalkoxy-substituted aryllithiums. Journal of Organometallic Chemistry, 2009, 694, 3619-3625.	1.8	5
41	Active-alkali metal-promoted reductive cleavage of chlorinated phenols. Monatshefte Fýr Chemie, 2012, 143, 601-605.	1.8	4
42	Ammonium Salts Catalyzed Acetalization Reactions in Green Ethereal Solvents. Catalysts, 2020, 10, 1108.	3.5	4
43	Recovery, Purification, Analysis and Chemical Modification of a Waste Cooking Oil. Waste and Biomass Valorization, 2023, 14, 145-157.	3.4	4
44	m-Terphenyl Ethers, a New Hydroxy Protecting Group Cleavable under Reductive Single Electron Transfer Reaction Conditions. Synthesis, 2011, 2011, 1575-1580.	2.3	3
45	Nenitzescu Synthesis of 5â€Hydroxyindoles with Zinc, Iron and Magnesium Salts in Cyclopentyl Methyl Ether. European Journal of Organic Chemistry, 2021, 2021, 5835.	2.4	3
46	Regio- and stereochemistry of Na-mediated reductive cleavage of alkyl aryl ethers. Tetrahedron: Asymmetry, 2014, 25, 1550-1554.	1.8	2
47	1,2-Diaryl-1,2-disodioethanes: Versatile, Highly Reactive, and Tunable Synthetic Equivalents of Sodium Metal. Australian Journal of Chemistry, 2017, 70, 647.	0.9	2