
Xiao Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5819260/publications.pdf Version: 2024-02-01

XIAO XIONC

#	Article	IF	CITATIONS
1	Transverse Mode-Encoded Quantum Gate on a Silicon Photonic Chip. Physical Review Letters, 2022, 128, 060501.	7.8	10
2	Diamond mirrors for high-power continuous-wave lasers. Nature Communications, 2022, 13, 2610.	12.8	9
3	Control of Plexcitonic Strong Coupling via Substrateâ€Mediated Hotspot Nanoengineering. Advanced Optical Materials, 2022, 10, .	7.3	6
4	Frequency conversion in nano-waveguides using bound-state-in-continuum. Optics Letters, 2021, 46, 242.	3.3	4
5	Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters, 2021, 118, .	3.3	21
6	Suppressing decoherence in quantum plasmonic systems by the spectral-hole-burning effect. Physical Review A, 2021, 103, .	2.5	3
7	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Letters, 2021, 21, 8979-8986.	9.1	41
8	Plasmon-Enhanced Resonant Photoemission from Metal Surfaces Coated with Ultrathin Dielectric. , 2021, , .		0
9	Ultrastrong coupling in single plexcitonic nanocubes. Nanophotonics, 2020, 9, 257-266.	6.0	19
10	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	9.1	16
11	Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings. ACS Nano, 2020, 14, 8806-8815.	14.6	27
12	Cavity-enhanced energy transfer between nano-emitters and monolayer graphene. Carbon, 2020, 161, 794-799.	10.3	8
13	Particle simulation of plasmons. Nanophotonics, 2020, 9, 3303-3313.	6.0	9
14	UV–NIR femtosecond laser hybrid lithography for efficient printing of complex on-chip waveguides. Optics Letters, 2020, 45, 1862.	3.3	6
15	Revealing Electron Spill-Out in Plasmonic Nanostructures Using Particle Simulation. , 2020, , .		0
16	Particle-in-Cell Simulation of Plasmons. , 2020, , .		0
17	Quantum Plasmonic Immunoassay Sensing. Nano Letters, 2019, 19, 5853-5861.	9.1	55
18	On hip Polarization Rotators. Advanced Optical Materials, 2019, 7, 1900129.	7.3	18

XIAO XIONG

#	Article	IF	CITATIONS
19	On-chip transverse-mode entangled photon pair source. Npj Quantum Information, 2019, 5, .	6.7	41
20	Controlled Outcoupling of Whispering-Gallery-Mode Lasers Based on Self-Assembled Organic Single-Crystalline Microrings. Nano Letters, 2019, 19, 1098-1103.	9.1	24
21	Collecting quantum dot fluorescence with a hybrid plasmonic probe. OSA Continuum, 2019, 2, 881.	1.8	2
22	Gap plasmon-enhanced photoluminescence of monolayer MoS ₂ in hybrid nanostructure. Chinese Physics B, 2018, 27, 047302.	1.4	11
23	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	25.5	105
24	Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher's note. Advances in Optics and Photonics, 2018, 10, 939.	25.5	1
25	Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nature Communications, 2017, 8, 2098.	12.8	137
26	Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Optics Express, 2017, 25, 6963.	3.4	177
27	Integrated Lithium Niobate Platform for Nonlinear Optics and Electro-Optic Applications. , 2017, , .		0
28	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. , 2017, , .		0
29	Mechanical bound state in the continuum for optomechanical microresonators. New Journal of Physics, 2016, 18, 063031.	2.9	22
30	Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS_2 by focusing radially-polarized beams. Optics Express, 2016, 24, 27554.	3.4	10
31	On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nature Communications, 2016, 7, 11985.	12.8	97
32	Quasi-phase matching in periodically-grooved thin-film lithium niobate waveguides. , 2016, , .		0
33	Waveguide Mode Splitter Based on Multi-mode Dielectric-Loaded Surface Plasmon Polariton Waveguide. Chinese Physics Letters, 2015, 32, 107305.	3.3	4
34	High visibility on-chip quantum interference of single surface plasmons. , 2015, , .		0
35	Oneâ€Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications. Small, 2015, 11, 3728-3743.	10.0	21
36	Transmission of Photonic Quantum Polarization Entanglement in a Nanoscale Hybrid Plasmonic Waveguide. Nano Letters, 2015, 15, 2380-2384.	9.1	88

XIAO XIONG

#	Article	IF	CITATIONS
37	Propagation of quantum signal in plasmonic waveguides. , 2015, , .		0
38	Guiding light through optical bound states in the continuum for ultrahighâ€∢i>Q microresonators. Laser and Photonics Reviews, 2015, 9, 114-119.	8.7	128
39	Independently analyzing different surface plasmon polariton modes on silver nanowire. Optics Express, 2014, 22, 23372.	3.4	5
40	Broadband Plasmonic Absorber for Photonic Integrated Circuits. IEEE Photonics Technology Letters, 2014, 26, 1726-1729.	2.5	11
41	High-Visibility On-Chip Quantum Interference of Single Surface Plasmons. Physical Review Applied, 2014, 2, .	3.8	52
42	Silver nanowires for photonics applications. Laser and Photonics Reviews, 2013, 7, 901-919.	8.7	87
43	Efficient coupling between dielectric waveguide modes and exterior plasmon whispering gallery modes. Optics Express, 2013, 21, 31253.	3.4	4
44	Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling. Physical Review A, 2013, 88, .	2.5	21
45	Integrated polarization rotator/converter by stimulated Raman adiabatic passage. Optics Express, 2013, 21, 17097.	3.4	19
46	Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Scientific Reports, 2013, 3, 2402.	3.3	47