Chun Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5819091/publications.pdf

Version: 2024-02-01

236925 265206 1,766 42 46 25 citations h-index g-index papers 1005 46 46 46 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS. Astrophysical Journal, Supplement Series, 2014, 214, 4.	7.7	194
2	MPI-AMRVAC 2.0 for Solar and Astrophysical Applications. Astrophysical Journal, Supplement Series, 2018, 234, 30.	7.7	136
3	FORMATION OF SOLAR FILAMENTS BY STEADY AND NONSTEADY CHROMOSPHERIC HEATING. Astrophysical Journal, 2011, 737, 27.	4.5	92
4	FORMATION AND PLASMA CIRCULATION OF SOLAR PROMINENCES. Astrophysical Journal, 2016, 823, 22.	4.5	90
5	SIMULATIONS OF PROMINENCE FORMATION IN THE MAGNETIZED SOLAR CORONA BY CHROMOSPHERIC HEATING. Astrophysical Journal Letters, 2012, 748, L26.	8.3	85
6	Observations and simulations of longitudinal oscillations of an active region prominence. Astronomy and Astrophysics, 2012, 542, A52.	5.1	78
7	SIMULATING THE IN SITU CONDENSATION PROCESS OF SOLAR PROMINENCES. Astrophysical Journal Letters, 2014, 792, L38.	8.3	72
8	A Comprehensive Comparison of Relativistic Particle Integrators. Astrophysical Journal, Supplement Series, 2018, 235, 21.	7.7	60
9	MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS. Astrophysical Journal Letters, 2013, 771, L29.	8.3	58
10	Parametric survey of longitudinal prominence oscillation simulations. Astronomy and Astrophysics, 2013, 554, A124.	5.1	49
11	THREE-DIMENSIONAL PROMINENCE-HOSTING MAGNETIC CONFIGURATIONS: CREATING A HELICAL MAGNETIC FLUX ROPE. Astrophysical Journal, 2014, 780, 130.	4.5	47
12	Three-dimensional MHD Simulations of Solar Prominence Oscillations in a Magnetic Flux Rope. Astrophysical Journal, 2018, 856, 179.	4.5	45
13	MAGNETO-FRICTIONAL MODELING OF CORONAL NONLINEAR FORCE-FREE FIELDS. I. TESTING WITH ANALYTIC SOLUTIONS. Astrophysical Journal, 2016, 828, 82.	4.5	43
14	MPI-AMRVAC: A parallel, grid-adaptive PDE toolkit. Computers and Mathematics With Applications, 2021, 81, 316-333.	2.7	41
15	CORONAL RAIN IN MAGNETIC ARCADES: REBOUND SHOCKS, LIMIT CYCLES, AND SHEAR FLOWS. Astrophysical Journal, 2015, 807, 142.	4.5	39
16	Solar Magnetic Flux Rope Eruption Simulated by a Data-driven Magnetohydrodynamic Model. Astrophysical Journal Letters, 2019, 870, L21.	8.3	38
17	THE DYNAMICS OF FUNNEL PROMINENCES. Astrophysical Journal, 2014, 789, 22.	4.5	37
18	MAGNETO-FRICTIONAL MODELING OF CORONAL NONLINEAR FORCE-FREE FIELDS. II. APPLICATION TO OBSERVATIONS. Astrophysical Journal, 2016, 828, 83.	4.5	37

#	Article	IF	Citations
19	Coronal Condensations Caused by Magnetic Reconnection between Solar Coronal Loops. Astrophysical Journal Letters, 2018, 864, L4.	8.3	34
20	Coronal rain in magnetic bipolar weak fields. Astronomy and Astrophysics, 2017, 603, A42.	5.1	33
21	MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP. Astrophysical Journal, 2015, 813, 33.	4.5	31
22	SOLAR PROMINENCES: "DOUBLE, DOUBLE… BOIL AND BUBBLE― Astrophysical Journal Letters, 2015, 806, L13.	8.3	31
23	THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES. Astrophysical Journal, 2016, 833, 36.	4.5	29
24	A Fully Self-consistent Model for Solar Flares. Astrophysical Journal, 2020, 896, 97.	4.5	28
25	Formation and Initiation of Erupting Flux Rope and Embedded Filament Driven by Photospheric Converging Motion. Astrophysical Journal, 2017, 841, 106.	4.5	26
26	Quasi-periodic Fast Propagating Magnetoacoustic Waves during the Magnetic Reconnection Between Solar Coronal Loops. Astrophysical Journal Letters, 2018, 868, L33.	8.3	26
27	Reconnection and particle acceleration in interacting flux ropes $\hat{a} \in \mathbb{N}$ II. 3D effects on test particles in magnetically dominated plasmas. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3465-3482.	4.4	25
28	Simulating coronal condensation dynamics in 3D. Advances in Space Research, 2015, 56, 2738-2759.	2.6	24
29	Forward Modeling of SDO/AIA and X-Ray Emission from a Simulated Flux Rope Ejection. Astrophysical Journal, 2019, 872, 190.	4.5	24
30	Thermal instabilities: Fragmentation and field misalignment of filament fine structure. Astronomy and Astrophysics, 2020, 636, A112.	5.1	23
31	The Magnetic Flux Rope Structure of a Triangulated Solar Filament. Astrophysical Journal Letters, 2019, 884, L1.	8.3	22
32	Transition region adaptive conduction (TRAC) in multidimensional magnetohydrodynamic simulations. Astronomy and Astrophysics, 2021, 648, A29.	5.1	22
33	INTERNAL DYNAMICS OF A TWIN-LAYER SOLAR PROMINENCE. Astrophysical Journal Letters, 2016, 825, L29.	8.3	20
34	Reconnection and particle acceleration in interacting flux ropes I. Magnetohydrodynamics and test particles in 2.5D. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	20
35	Repeated Coronal Condensations Caused by Magnetic Reconnection between Solar Coronal Loops. Astrophysical Journal, 2019, 884, 34.	4.5	19
36	INTERACTING TILT AND KINK INSTABILITIES IN REPELLING CURRENT CHANNELS. Astrophysical Journal, 2014, 795, 77.	4.5	18

#	Article	IF	CITATIONS
37	Data-constrained Magnetohydrodynamic Simulation of a Long-duration Eruptive Flare. Astrophysical Journal, 2021, 919, 39.	4.5	18
38	Extreme-ultraviolet and X-Ray Emission of Turbulent Solar Flare Loops. Astrophysical Journal Letters, 2019, 877, L11.	8.3	15
39	Solar flares and Kelvin-Helmholtz instabilities: A parameter survey. Astronomy and Astrophysics, 2018, 618, A135.	5.1	12
40	Ideal MHD instabilities for coronal mass ejections: interacting current channels and particle acceleration. Reviews of Modern Plasma Physics, 2019, 3, 1.	4.1	10
41	Measuring three-dimensional shapes of stable solar prominences using stereoscopic observations from SDO and STEREO. Astronomy and Astrophysics, 2021, 647, A112.	5.1	7
42	Synthetic Radio Views of Simulated Solar Flux Ropes. Solar Physics, 2016, 291, 823-845.	2.5	4
43	Optimizing the hybrid parallelization of BHAC. Astronomy and Computing, 2022, 38, 100509.	1.7	4
44	Modeling Magnetic Flux Ropes. Proceedings of the International Astronomical Union, 2013, 8, 121-124.	0.0	0
45	Prominence Formation and Destruction. Proceedings of the International Astronomical Union, 2013, 8, 468-469.	0.0	О
46	Modeling Prominence Formation in 2.5D. Proceedings of the International Astronomical Union, 2013, 8, 410-411.	0.0	0