
Jesko Koehnke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5818953/publications.pdf Version: 2024-02-01

IESKO KOEHNKE

#	Article	IF	CITATIONS
1	Substrateâ€Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
2	Total In Vitro Biosynthesis of the Thioamitide Thioholgamide and Investigation of the Pathway. Journal of the American Chemical Society, 2022, 144, 5136-5144.	13.7	19
3	Enhancing glycan stability <i>via</i> site-selective fluorination: modulating substrate orientation by molecular design. Chemical Science, 2021, 12, 1286-1294.	7.4	24
4	New developments in RiPP discovery, enzymology and engineering. Natural Product Reports, 2021, 38, 130-239.	10.3	412
5	Leader peptide exchange to produce hybrid, new-to-nature ribosomal natural products. Chemical Communications, 2021, 57, 6372-6375.	4.1	15
6	Bottromycins - biosynthesis, synthesis and activity. Natural Product Reports, 2021, 38, 1659-1683.	10.3	30
7	Structureâ€Activity Relationship and Modeâ€Ofâ€Action Studies Highlight 1â€(4â€BiphenylyImethyl)â€1 <i>H</i> â€imidazoleâ€Derived Small Molecules as Potent CYP121 Inhibitors. ChemMedChem, 2021, 16, 2786-2801.	3.2	9
8	The core of the matter. Nature Chemical Biology, 2021, 17, 1118-1119.	8.0	0
9	Non-Heme Monooxygenase ThoJ Catalyzes Thioholgamide β-Hydroxylation. ACS Chemical Biology, 2020, 15, 2815-2819.	3.4	9
10	Characterization of the Stereoselective P450 Enzyme BotCYP Enables the <i>In Vitro</i> Biosynthesis of the Bottromycin Core Scaffold. Journal of the American Chemical Society, 2020, 142, 20560-20565.	13.7	8
11	<i>N</i> -Aryl-3-mercaptosuccinimides as Antivirulence Agents Targeting <i>Pseudomonas aeruginosa</i> Elastase and <i>Clostridium</i> Collagenases. Journal of Medicinal Chemistry, 2020, 63, 8359-8368.	6.4	27
12	The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes. Nature Chemical Biology, 2020, 16, 1013-1018.	8.0	18
13	Biosynthesis of Cittilins, Unusual Ribosomally Synthesized and Post-translationally Modified Peptides from <i>Myxococcus xanthus</i> . ACS Chemical Biology, 2020, 15, 2221-2231.	3.4	46
14	Tutuilamides A–C: Vinyl-Chloride-Containing Cyclodepsipeptides from Marine Cyanobacteria with Potent Elastase Inhibitory Properties. ACS Chemical Biology, 2020, 15, 751-757.	3.4	33
15	Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis. Journal of the American Chemical Society, 2019, 141, 9748-9752.	13.7	26
16	The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Natural Product Reports, 2019, 36, 1576-1588.	10.3	17
17	The structure of CgnJ, a domain of unknown function protein from the crocagin gene cluster. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 205-211.	0.8	1
18	Binding Mode Characterization and Early <i>in Vivo</i> Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2018, 4, 988-997.	3.8	27

Jesko Koehnke

#	Article	IF	CITATIONS
19	Adaptation of a Bacterial Multidrug Resistance System Revealed by the Structure and Function of AlbA. Journal of the American Chemical Society, 2018, 140, 16641-16649.	13.7	14
20	Tackling <i>Pseudomonas aeruginosa</i> Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chemical Biology, 2018, 13, 2449-2455.	3.4	24
21	Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from <i>Chondromyces crocatus</i> . Angewandte Chemie - International Edition, 2017, 56, 7407-7410.	13.8	32
22	Thioholgamides: Thioamide-Containing Cytotoxic RiPP Natural Products. ACS Chemical Biology, 2017, 12, 2837-2841.	3.4	65
23	Photorhabdus luminescens lectin A (PllA): A new probe for detecting α-galactoside–terminating glycoconjugates. Journal of Biological Chemistry, 2017, 292, 19935-19951.	3.4	9
24	Macroamidine Formation in Bottromycins Is Catalyzed by a Divergent YcaO Enzyme. Journal of the American Chemical Society, 2017, 139, 18158-18161.	13.7	36
25	The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nature Communications, 2017, 8, 1529.	12.8	66
26	Cyclic Peptides. Chemical Biology, 2017, , .	0.2	4
27	Structure and Substrate Recognition of the Bottromycin Maturation Enzyme BotP. ChemBioChem, 2016, 17, 2286-2292.	2.6	15
28	Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nature Chemical Biology, 2015, 11, 558-563.	8.0	155
29	In vitro reconstitution of α-pyrone ring formation in myxopyronin biosynthesis. Chemical Science, 2015, 6, 5076-5085.	7.4	39
30	The structural biology of patellamide biosynthesis. Current Opinion in Structural Biology, 2014, 29, 112-121.	5.7	39
31	An Efficient Method for the In Vitro Production of Azol(in)eâ€Based Cyclic Peptides. Angewandte Chemie - International Edition, 2014, 53, 14171-14174.	13.8	53
32	The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1597-1603.	0.8	15
33	An Enzymatic Route to Selenazolines. ChemBioChem, 2013, 14, 564-567.	2.6	26
34	Structure of PatF from <i>Prochloron didemni</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 618-623.	0.7	27
35	The Cyanobactin Heterocyclase Enzyme: A Processive Adenylase That Operates with a Defined Order of Reaction. Angewandte Chemie - International Edition, 2013, 52, 13991-13996.	13.8	93
36	The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nature Structural and Molecular Biology, 2012, 19, 767-772.	8.2	136

Jesko Koehnke

#	Article	IF	CITATIONS
37	The Discovery of New Cyanobactins from <i>Cyanothece</i> PCC 7425 Defines a New Signature for Processing of Patellamides. ChemBioChem, 2012, 13, 2683-2689.	2.6	49
38	Splice Form Dependence of Î ² -Neurexin/Neuroligin Binding Interactions. Neuron, 2010, 67, 61-74.	8.1	89
39	The Penetratin Sequence in the Anticancer PNC-28 Peptide Causes Tumor Cell Necrosis Rather Than Apoptosis of Human Pancreatic Cancer Cells. Annals of Surgical Oncology, 2008, 15, 3588-3600.	1.5	14
40	Crystal Structures of \hat{I}^2 -Neurexin 1 and \hat{I}^2 -Neurexin 2 Ectodomains and Dynamics of Splice Insertion Sequence 4. Structure, 2008, 16, 410-421.	3.3	33
41	Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1873-1878.	7.1	37
42	Ubc9 fusion–directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nature Methods, 2007, 4, 245-250.	19.0	80
43	Substrateâ€inspired fragment merging and growing affords efficacious LasB inhibitors. Angewandte Chemie, 0, , .	2.0	Ο