
## Ricardo Dalagnol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5818367/publications.pdf Version: 2024-02-01



RICARDO DALACNOL

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change.<br>Nature Communications, 2021, 12, 1785.                                                                  | 5.8 | 99        |
| 2  | Vulnerability of Amazonian forests to repeated droughts. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2018, 373, 20170411.                                                        | 1.8 | 80        |
| 3  | Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sensing, 2020, 12, 1288.                                                                                                       | 1.8 | 67        |
| 4  | Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Frontiers in Earth Science, 2019, 7, .                                                                                                             | 0.8 | 46        |
| 5  | Delineation of management zones in agricultural fields using cover–crop biomass estimates from<br>PlanetScope data. International Journal of Applied Earth Observation and Geoinformation, 2020, 85,<br>102004. | 1.4 | 38        |
| 6  | Both near-surface and satellite remote sensing confirm drought legacy effect on tropical forest leaf<br>phenology after 2015/2016 ENSO drought. Remote Sensing of Environment, 2020, 237, 111489.               | 4.6 | 35        |
| 7  | U-Net-Id, an Instance Segmentation Model for Building Extraction from Satellite Images—Case Study in the Joanópolis City, Brazil. Remote Sensing, 2020, 12, 1544.                                               | 1.8 | 35        |
| 8  | Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Scientific Reports, 2021, 11, 1388.                                | 1.6 | 32        |
| 9  | Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sensing, 2019, 11, 817.                                    | 1.8 | 30        |
| 10 | Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences, 2018, 15, 6087-6104.                                                                                           | 1.3 | 29        |
| 11 | Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change?. Climate Resilience and Sustainability, 2022, 1, .                                           | 0.9 | 26        |
| 12 | Regional Mapping and Spatial Distribution Analysis of Canopy Palms in an Amazon Forest Using Deep<br>Learning and VHR Images. Remote Sensing, 2020, 12, 2225.                                                   | 1.8 | 24        |
| 13 | Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest.<br>Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210094.                                   | 1.2 | 23        |
| 14 | Phenology and Seasonal Ecosystem Productivity in an Amazonian Floodplain Forest. Remote Sensing,<br>2019, 11, 1530.                                                                                             | 1.8 | 16        |
| 15 | Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data.<br>Remote Sensing, 2020, 12, 430.                                                                            | 1.8 | 15        |
| 16 | Spectral/textural attributes from ALI/EO-1 for mapping primary and secondary tropical forests and studying the relationships with biophysical parameters. GIScience and Remote Sensing, 2014, 51, 677-694.      | 2.4 | 14        |
| 17 | Assessment of climate change impacts on water resources of the Purus Basin in the southwestern<br>Amazon. Acta Amazonica, 2017, 47, 213-226.                                                                    | 0.3 | 14        |
| 18 | Aboveground biomass estimates over Brazilian savannas using hyperspectral metrics and machine<br>learning models: experiences with Hyperion/EO-1. GIScience and Remote Sensing, 2021, 58, 1112-1129.            | 2.4 | 14        |

RICARDO DALAGNOL

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Floristic and structure of an Amazonian primary forest and a chronosequence of secondary succession. Acta Amazonica, 2016, 46, 133-150.                                                                             | 0.3 | 13        |
| 20 | Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest. GlScience and Remote Sensing, 2016, 53, 689-706.                                 | 2.4 | 13        |
| 21 | Following a site-specific secondary succession in the Amazon using the Landsat CDR product and field inventory data. International Journal of Remote Sensing, 2015, 36, 574-596.                                    | 1.3 | 10        |
| 22 | Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and<br>Remote Sensing Data. Remote Sensing, 2022, 14, 1545.                                                          | 1.8 | 10        |
| 23 | Scienceâ€based planning can support law enforcement actions to curb deforestation in the Brazilian<br>Amazon. Conservation Letters, 2022, 15, .                                                                     | 2.8 | 10        |
| 24 | Forest Canopy Changes in the Southern Amazon during the 2019 Fire Season Based on Passive Microwave and Optical Satellite Observations. Remote Sensing, 2021, 13, 2238.                                             | 1.8 | 7         |
| 25 | Assessing the effect of spatial resolution on the delineation of management zones for smallholder farming in southern Brazil. Remote Sensing Applications: Society and Environment, 2020, 19, 100325.               | 0.8 | 7         |
| 26 | Compound impact of land use and extreme climate on the 2020 fire record of the Brazilian Pantanal.<br>Global Ecology and Biogeography, 2022, 31, 1960-1975.                                                         | 2.7 | 6         |
| 27 | Eficácia da arquitetura MLP em modo closed-loop para simulação de um Sistema Hidrológico. Revista<br>Brasileira De Recursos Hidricos, 2016, 21, 821-831.                                                            | 0.5 | 5         |
| 28 | Adjustments to SIF Aid the Interpretation of Drought Responses at the Caatinga of Northeast Brazil.<br>Remote Sensing, 2020, 12, 3264.                                                                              | 1.8 | 4         |
| 29 | Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks. Remote Sensing, 2021, 13, 4944.                                                  | 1.8 | 3         |
| 30 | On the combined use of phenological metrics derived from different PlanetScope vegetation indices<br>for classifying savannas in Brazil. Remote Sensing Applications: Society and Environment, 2022, 26,<br>100764. | 0.8 | 2         |
| 31 | ÃRVORE MODELO FRENTE A UMA REDE NEURAL ARTIFICIAL PARA A MODELAGEM CHUVA-VAZÃO. Nativa, 2019, 7, 527.                                                                                                               | 0.2 | 1         |