Francesca Pischiutta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ischemic Environment Drives Microglia and Macrophage Function. Frontiers in Neurology, 2015, 6, 81.	2.4	217
2	Bone Marrow Mesenchymal Stromal Cells Drive Protective M2 Microglia Polarization After Brain Trauma. Neurotherapeutics, 2014, 11, 679-695.	4.4	140
3	Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma*. Critical Care Medicine, 2011, 39, 2501-2510.	0.9	130
4	Shape descriptors of the "never resting―microglia in three different acute brain injury models in mice. Intensive Care Medicine Experimental, 2015, 3, 39.	1.9	117
5	Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials, 2016, 75, 13-24.	11.4	110
6	Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Experimental Neurology, 2018, 300, 167-178.	4.1	86
7	Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. Journal of Neurotrauma, 2016, 33, 1060-1072.	3.4	75
8	Induction of a transmissible tau pathology by traumatic brain injury. Brain, 2018, 141, 2685-2699.	7.6	74
9	Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Critical Care Medicine, 2016, 44, e1118-e1131.	0.9	66
10	Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice. Cell Death and Differentiation, 2021, 28, 203-218.	11.2	63
11	Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology, 2014, 79, 119-126.	4.1	44
12	Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Scientific Reports, 2017, 7, 6962.	3.3	36
13	Mesenchymal Stem Cell Therapy in Intracerebral Haemorrhagic Stroke. Current Medicinal Chemistry, 2018, 25, 2176-2197.	2.4	33
14	Label-free monitoring of tissue biochemistry following traumatic brain injury using Raman spectroscopy. Analyst, The, 2017, 142, 132-139.	3.5	26
15	Neuroprotection in Traumatic Brain Injury: Mesenchymal Stromal Cells can Potentially Overcome Some Limitations of Previous Clinical Trials. Frontiers in Neurology, 2018, 9, 885.	2.4	20
16	Sixâ€Month Ischemic Mice Show Sensorimotor and Cognitive Deficits Associated with Brain Atrophy and Axonal Disorganization. CNS Neuroscience and Therapeutics, 2013, 19, 695-704.	3.9	17
17	Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. Npj Regenerative Medicine, 2021, 6, 71.	5.2	14
18	Placenta-Derived Cells for Acute Brain Injury. Cell Transplantation, 2018, 27, 151-167.	2.5	12

#	Article	IF	CITATIONS
19	Ageing is associated with maladaptive immune response and worse outcome after traumatic brain injury. Brain Communications, 2022, 4, fcac036.	3.3	12
20	Internalization of nanopolymeric tracers does not alter characteristics of placental cells. Journal of Cellular and Molecular Medicine, 2016, 20, 1036-1048.	3.6	4