You-gen Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries. Green Energy and Environment, 2023, 8, 308-317.	8.7	6
2	Intrinsically zincophobic protective layer for dendrite-free zinc metal anode. Chinese Chemical Letters, 2022, 33, 2653-2657.	9.0	22
3	Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical Communications, 2022, 58, 2597-2611.	4.1	14
4	A dual-electrolyte system for highly efficient Al–air batteries. Chemical Communications, 2022, 58, 3282-3285.	4.1	12
5	Regulating solvation and interface chemistry to inhibit corrosion of the aluminum anode in aluminum–air batteries. Journal of Materials Chemistry A, 2022, 10, 9506-9514.	10.3	17
6	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
7	Interfacial Reviving of the Degraded LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode by LiPO ₃ Repair Strategy. Small, 2022, 18, e2107346.	10.0	11
8	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
9	Synergistic regulating the aluminum corrosion by ellagic acid and sodium stannate hybrid additives for advanced aluminum-air battery. Electrochimica Acta, 2022, 417, 140311.	5.2	17
10	Turn "Waste―into Wealth: A Facile Reviving Strategy for Degraded Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. Industrial & Engineering Chemistry Research, 2022, 61, 141-151.	3.7	7
11	Engineering hierarchical structure and surface of Na4MnV(PO4)3 for ultrafast sodium storage by a scalable ball milling approach. Nano Energy, 2022, 99, 107396.	16.0	22
12	A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries. Chemical Communications, 2022, 58, 8702-8705.	4.1	3
13	Engineering Crystal Orientation of Cathode for Advanced Lithiumâ€lon Batteries: A Minireview. Chemical Record, 2022, 22, .	5.8	11
14	Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry - an Asian Journal, 2021, 16, 3-19.	3.3	27
15	High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chemical Engineering Journal, 2021, 406, 126772.	12.7	37
16	A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode. Advanced Science, 2021, 8, 2001809.	11.2	63
17	A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes. Acta Metallurgica Sinica (English Letters), 2021, 34, 309-320.	2.9	26
18	Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chemical Communications, 2021, 57, 4243-4246.	4.1	31

YOU-GEN TANG

#	Article	IF	CITATIONS
19	Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries. Chinese Chemical Letters, 2021, 32, 2427-2432.	9.0	14
20	Oxocarbons Electrode Materials for Alkali Ion Batteries: Challenges, Strategies and Development. Batteries and Supercaps, 2021, 4, 1791-1802.	4.7	2
21	Dual-Element-Modified Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ as a Highly Stable Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 43039-43050.	8.0	44
22	lssues and rational design of aqueous electrolyte for Znâ€ion batteries. SusMat, 2021, 1, 432-447.	14.9	62
23	A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy and Environmental Science, 2021, 14, 5563-5571.	30.8	141
24	In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chemical Engineering Journal, 2020, 382, 122959.	12.7	149
25	Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chemical Engineering Journal, 2020, 383, 123162.	12.7	88
26	Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 264, 118537.	20.2	81
27	The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries. Electrochimica Acta, 2020, 364, 136996.	5.2	19
28	Engineering the crystal orientation of Na ₃ V ₂ (PO ₄) ₂ F ₃ @rGO microcuboids for advanced sodium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2932-2942.	5.9	46
29	Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11, 3961.	12.8	378
30	lssues and solutions toward zinc anode in aqueous zincâ€ion batteries: A mini review. , 2020, 2, 540-560.		225
31	Advanced Filter Membrane Separator for Aqueous Zincâ€lon Batteries. Small, 2020, 16, e2003106.	10.0	118
32	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	8.6	15
33	A comprehensive review on the fabrication, modification and applications of Na ₃ V ₂ (PO ₄) ₂ F ₃ cathodes. Journal of Materials Chemistry A, 2020, 8, 21387-21407.	10.3	65
34	Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Materials, 2020, 31, 310-317.	18.0	67
35	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	2.0	40
36	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	13.8	727

YOU-GEN TANG

#	Article	IF	CITATIONS
37	How does Molybdenum Disulfide Store Charge: A Minireview. ChemSusChem, 2020, 13, 1354-1365.	6.8	30
38	Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020, 395, 124922.	12.7	61
39	Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials, 2020, 30, 1909486.	14.9	570
40	Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy and Environmental Science, 2020, 13, 1568-1592.	30.8	140
41	Plasma‣trengthened Lithiophilicity of Copper Oxide Nanosheet–Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 2019, 6, 1901433.	11.2	106
42	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	13.8	648
43	Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Central South University, 2019, 26, 1458-1468.	3.0	9
44	Nitrogen Plasma-Treated Core–Bishell Si@SiO _{<i>x</i>} @TiO _{2â^'δ} : Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 27658-27666.	8.0	44
45	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	16.0	118
46	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	2.0	116
47	Plasma-treated Ti ³⁺ -doped sodium titanate nanosheet arrays on titanium foil as a lithiophilic current collector for a stable lithium metal anode. Chemical Communications, 2019, 55, 6551-6554.	4.1	17
48	Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Materials, 2019, 23, 233-251.	18.0	279
49	Enhanced Electrochemical Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ at Elevated Temperature by Simultaneous Structure and Interface Regulating. Journal of the Electrochemical Society, 2019, 166, A1439-A1448	2.9	44
50	Reviving bulky MoS ₂ as an advanced anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10988-10997.	10.3	36
51	Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochimica Acta, 2019, 309, 242-252.	5.2	44
52	Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. Journal of Materials Science, 2019, 54, 2472-2482.	3.7	18
53	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Applied Catalysis B: Environmental, 2019, 242, 209-217.	20.2	121
54	On an easy way to prepare highly efficient Fe/N-co-doped carbon nanotube/nanoparticle composite for oxygen reduction reaction in Al–air batteries. Journal of Materials Science, 2018, 53, 10280-10291.	3.7	21

YOU-GEN TANG

#	Article	IF	CITATIONS
55	MoS ₂ /Graphene Nanosheets from Commercial Bulky MoS ₂ and Graphite as Anode Materials for High Rate Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702383.	19.5	350
56	Significantly enhanced oxygen reduction activity of Cu/CuN x C y co-decorated ketjenblack catalyst for Al–air batteries. Journal of Energy Chemistry, 2018, 27, 419-425.	12.9	41
57	TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chemical Engineering Journal, 2018, 332, 57-65.	12.7	66
58	Cu–MOF-Derived Cu/Cu ₂ O Nanoparticles and CuN _{<i>x</i>} C _{<i>y</i>} Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in Al–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 413-421.	6.7	105
59	Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy, 2018, 44, 217-227.	16.0	209
60	Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. Journal of Central South University, 2018, 25, 2320-2331.	3.0	16
61	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	2.9	8
62	Size controlling and surface engineering enable NaTi2(PO4)3/C outstanding sodium storage properties. Electrochimica Acta, 2018, 289, 21-28.	5.2	28
63	Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K ⁺ storage ability. Journal of Materials Chemistry A, 2018, 6, 23318-23325.	10.3	69
64	A facile annealing strategy for achieving <i>in situ</i> controllable Cu ₂ O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 18444-18448.	10.3	70
65	New Binderâ€Free Metal Phosphide–Carbon Felt Composite Anodes for Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801197.	19.5	113
66	Influence of Iron Source Type on the Electrocatalytic Activity toward Oxygen Reduction Reaction in Fe-N/C for Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, F662-F670.	2.9	14
67	Facile synthesis of TiP2O7/C nanoparticles as a competitive anode for aqueous lithium ion batteries. Electrochimica Acta, 2018, 278, 42-50.	5.2	21
68	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	21.0	180
69	Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon, 2018, 138, 300-308.	10.3	53
70	Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395, 305-313.	7.8	89
71	Iron-Doped Cauliflower-Like Rutile TiO ₂ with Superior Sodium Storage Properties. ACS Applied Materials & Interfaces, 2017, 9, 6093-6103.	8.0	125
72	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 5254-5262.	8.0	129

You-gen Tang

#	Article	IF	CITATIONS
73	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. Journal of Power Sources, 2017, 343, 30-38.	7.8	99
74	Defect-rich TiO2-Î′ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. Journal of Power Sources, 2017, 354, 179-188.	7.8	87
75	Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. Journal of Power Sources, 2017, 361, 1-8.	7.8	40
76	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	18.0	70
77	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces, 2015, 7, 28337-28345.	8.0	77
78	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	7.8	112
79	Determination of impurity elements in MnZn ferrites by inductively coupled plasma mass spectrometry. Journal of Central South University, 2015, 22, 37-42.	3.0	3
80	Three-Dimensional MnCo2O4.5Mesoporous Networks as an Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, A2302-A2307.	2.9	18
81	Electrochemical behavior and cyclic fading mechanism of LiNi0.5Mn0.5O2 electrode in LiNO3 electrolyte. Transactions of Nonferrous Metals Society of China, 2014, 24, 415-422.	4.2	5
82	LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries. Rare Metals, 2014, 33, 608-614.	7.1	6
83	Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale, 2014, 6, 10235-10242.	5.6	112
84	Trace amounts of impurities in electrolytic manganese metal by sector field inductively coupled plasma mass spectrometry. Journal of Central South University, 2013, 20, 3385-3390.	3.0	2
85	Nanoparticulate Mn0.3Ce0.7O2: a novel electrocatalyst with improved power performance for metal/air batteries. Journal of Materials Chemistry A, 2013, 1, 12512.	10.3	47
86	Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry. Journal of Central South University, 2012, 19, 2416-2420.	3.0	6
87	Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery. Central South University, 2008, 15, 484-487.	0.5	1
88	Determination of trace multi-elements in coal fly ash by inductively coupled plasma mass spectrometry. Central South University, 2007, 14, 68-72.	0.5	9