
Gourab Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 2020, 156, 180-185.	7.5	94
2	Keto–Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex. Journal of the American Chemical Society, 2017, 139, 18328-18338.	13.7	66
3	Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis, 2021, 11, 9761-9797.	11.2	54
4	Local Charge Distributions, Electric Dipole Moments, and Local Electric Fields Influence Reactivity Patterns and Guide Regioselectivities in α-Ketoglutarate-Dependent Non-heme Iron Dioxygenases. Accounts of Chemical Research, 2022, 55, 65-74.	15.6	48
5	Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)â€Oxo Complexes. Chemistry - A European Journal, 2019, 25, 5086-5098.	3.3	44
6	Mechanism of Oxidative Activation of Fluorinated Aromatic Compounds by Nâ€Bridged Diironâ€Phthalocyanine: What Determines the Reactivity?. Chemistry - A European Journal, 2019, 25, 14320-14331.	3.3	43
7	Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coordination Chemistry Reviews, 2021, 439, 213914.	18.8	41
8	Dramatic rate-enhancement of oxygen atom transfer by an iron(<scp>iv</scp>)-oxo species by equatorial ligand field perturbations. Dalton Transactions, 2018, 47, 14945-14957.	3.3	32
9	A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Organic and Biomolecular Chemistry, 2021, 19, 1879-1899.	2.8	25
10	Sluggish reactivity by a nonheme iron(<scp>iv</scp>)-tosylimido complex as compared to its oxo analogue. Dalton Transactions, 2020, 49, 5921-5931.	3.3	17
11	Eccentricities in Spectroscopy and Reactivity of Nonâ€Heme Metal Intermediates Contained in Bispidine Scaffolds. Israel Journal of Chemistry, 2020, 60, 1032-1048.	2.3	10
12	Influence of induced steric on the switchover reactivity of mononuclear Cu(II)-alkylperoxo complexes. Inorganica Chimica Acta, 2019, 485, 80-85.	2.4	7
13	Oxidative dehalogenation of halophenols by high-valent nonheme iron(<scp>iv</scp>)-oxo intermediates. Faraday Discussions, 2022, 234, 58-69.	3.2	5