Ramesh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817681/publications.pdf Version: 2024-02-01

PAMESH KUMAD

#	Article	IF	CITATIONS
1	Lignocellulolytic microbiomes for augmenting lignocellulose degradation in anaerobic digestion. Trends in Microbiology, 2022, 30, 6-9.	3.5	25
2	Downstream process: toward cost/energy effectiveness. , 2022, , 249-260.		5
3	Technoeconomic analysis of biofuel production with special reference to a downstream process. , 2022, , 31-44.		1
4	Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. Journal of Cleaner Production, 2022, 333, 130180.	4.6	67
5	Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresource Technology, 2022, 351, 127034.	4.8	34
6	Feasibility assessment of bioethanol production from humic acid-assisted alkaline pretreated Kentucky bluegrass (Poa pratensis L.) followed by downstream enrichment using direct contact membrane distillation. Bioresource Technology, 2022, 360, 127521.	4.8	13
7	Downstream recovery of Li and value-added metals (Ni, Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system. Chemical Engineering Journal, 2022, 447, 137507.	6.6	27
8	Syntrophic bacteria- and Methanosarcina-rich acclimatized microbiota with better carbohydrate metabolism enhances biomethanation of fractionated lignocellulosic biocomponents. Bioresource Technology, 2022, 360, 127602.	4.8	22
9	Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Processing Technology, 2021, 211, 106577.	3.7	40
10	Advanced operation and control in graphical user interface of a membrane-integrated hybrid biochemical process for acetic acid production. Indian Chemical Engineer, 2021, 63, 84-98.	0.9	1
11	Experimental investigations of hazardous leather industry dye (Acid Yellow 2GL) removal from simulated wastewater using a promising integrated approach. Chemical Engineering Research and Design, 2021, 155, 444-454.	2.7	17
12	Sustainable Production of Biofuels through Membrane-Integrated Systems. Separation and Purification Reviews, 2020, 49, 207-228.	2.8	31
13	Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. Science of the Total Environment, 2020, 698, 134169.	3.9	126
14	Catalytic conversion of CO2 to biofuel (methanol) and downstream separation in membrane-integrated photoreactor system under suitable conditions. International Journal of Hydrogen Energy, 2020, 45, 675-690.	3.8	16
15	Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. Journal of Cleaner Production, 2020, 277, 123954.	4.6	48
16	Separation of COD, sulphate and chloride from pharmaceutical wastewater using membrane integrated system: Transport modeling towards scale-up. Journal of Environmental Chemical Engineering, 2020, 8, 104275.	3.3	13
17	Photocatalytic conversion of CO2 to methanol using membrane-integrated Green approach: A review on capture, conversion and purification. Journal of Environmental Chemical Engineering, 2020, 8, 103935.	3.3	43
18	Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants. Microorganisms for Sustainability, 2020, , 193-219.	0.4	0

Ramesh Kumar

#	Article	IF	CITATIONS
19	Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions. Frontiers of Chemical Science and Engineering, 2019, 13, 152-163.	2.3	20
20	Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Conversion and Management, 2019, 181, 593-607.	4.4	39
21	Fermentative production of gluconic acid: A membrane-integrated Green process. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 76-84.	2.7	23
22	Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Conversion and Management, 2018, 171, 371-383.	4.4	38
23	Fermentative energy conversion: Renewable carbon source to biofuels (ethanol) using Saccharomyces cerevisiae and downstream purification through solar driven membrane distillation and nanofiltration. Energy Conversion and Management, 2017, 150, 545-557.	4.4	35
24	Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: Analysis of process intensification. Chemical Engineering and Processing: Process Intensification, 2017, 122, 258-268.	1.8	18
25	Modeling and simulation of continuous production of L (+) glutamic acid in a membrane-integrated bioreactor. Biochemical Engineering Journal, 2016, 106, 68-86.	1.8	22
26	Manufacture of gluconic acid: A review towards process intensification for green production. Chemical Engineering and Processing: Process Intensification, 2016, 104, 160-171.	1.8	90
27	Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environmental Science and Pollution Research, 2015, 22, 17453-17464.	2.7	127
28	A novel forward osmosis-nano filtration integrated system for coke-oven wastewater reclamation. Chemical Engineering Research and Design, 2015, 100, 542-553.	2.7	42
29	Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation. Environmental Science and Pollution Research, 2015, 22, 6010-6023.	2.7	25
30	Fermentative production of glutamic acid from renewable carbon source: Process intensification through membrane-integrated hybrid bio-reactor system. Chemical Engineering and Processing: Process Intensification, 2015, 92, 7-17.	1.8	15
31	Fermentative production of poly (\hat{I}^3 -glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process. Bioresource Technology, 2015, 177, 141-148.	4.8	30
32	Cyanide Removal from Industrial Wastewater by Crossâ€Flow Nanofiltration: Transport Modeling and Economic Evaluation. Water Environment Research, 2014, 86, 698-706.	1.3	14
33	Treatment of Coke Wastewater: A Critical Review for Developing Sustainable Management Strategies. Separation and Purification Reviews, 2014, 43, 89-123.	2.8	124
34	A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant. Environmental Science and Pollution Research, 2014, 21, 1833-1849.	2.7	8
35	Production and purification of glutamic acid: A critical review towards process intensification. Chemical Engineering and Processing: Process Intensification, 2014, 81, 59-71.	1.8	55
36	Production of L (+) Glutamic Acid in a Fully Membrane-Integrated Hybrid Reactor System: Direct and Continuous Production under Non-Neutralizing Conditions. Industrial & amp; Engineering Chemistry Research, 2014, 53, 19019-19027.	1.8	13

RAMESH KUMAR

#	Article	IF	CITATIONS
37	Membrane-integrated hybrid system for the effective treatment of ammoniacal wastewater of coke-making plant: a volume reduction approach. Environmental Technology (United Kingdom), 2014, 35, 2018-2027.	1.2	21
38	The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes. Separation and Purification Technology, 2014, 133, 55-68.	3.9	100
39	Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches. Journal of Cleaner Production, 2013, 43, 59-70.	4.6	80
40	A membrane-integrated advanced scheme for treatment of industrial wastewater: Dynamic modeling towards scale up. Chemosphere, 2013, 92, 1375-1382.	4.2	21
41	Removal of Phenol from Cokeâ€Oven Wastewater by Crossâ€Flow Nanofiltration Membranes. Water Environment Research, 2013, 85, 447-455.	1.3	36
42	Membrane-integrated hybrid bioremediation of industrial wastewater: a continuous treatment and recycling approach. Journal of Water Reuse and Desalination, 2013, 3, 26-38.	1.2	21
43	Response surface-optimized Fenton's pre-treatment for chemical precipitation of struvite and recycling of water through downstream nanofiltration. Chemical Engineering Journal, 2012, 210, 33-44.	6.6	57
44	Separating Cyanide from Coke Wastewater by Cross Flow Nanofiltration. Separation Science and Technology, 2011, 46, 2119-2127.	1.3	48