Kazuhiko Misawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817582/publications.pdf

Version: 2024-02-01

331259 288905 1,705 112 21 40 citations h-index g-index papers 117 117 117 1572 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Timeâ€course quantitative mapping of caffeine within the epidermis, using highâ€contrast pump–probe stimulated Raman scattering microscopy. Skin Research and Technology, 2022, 28, 47-53.	0.8	4
2	Analysis of sunscreen penetration in skin using phase-modulated stimulated Raman scattering microscopy. , 2022, , .		O
3	Femtosecond X-ray spectroscopy of haem proteins. Faraday Discussions, 2021, 228, 312-328.	1.6	2
4	Polarization twisting dual-pulse generation. , 2021, , .		0
5	Label-free skin penetration analysis using time-resolved, phase-modulated stimulated Raman scattering microscopy. Biomedical Optics Express, 2021, 12, 6545.	1.5	3
6	Bacterial inactivation in platelet concentrates using ultrashort pulsed laser. , 2021, , .		0
7	Quantitative measurement of low-concentration analytes using Raman spectroscopy during droplet evaporation for therapeutic drug monitoring. , 2021, , .		O
8	Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nature Communications, 2020, 11, 4145.	5.8	29
9	Generation and manipulation of polarization-twisting dual pulses with a high degree of freedom. Optics Letters, 2020, 45, 6663.	1.7	5
10	High-Pressure Gas Measurement Using Time-Resolved Rotational CARS with Temporally Asymmetric Pulses. , 2020, , .		0
11	Detection of Viral Infection and Subsequent Apoptosis in Cells by Raman Scattering Microspectroscopy. , 2020, , .		O
12	High-Contrast Depth Imaging of Skin Moisturizing Agent Using Phase-Modulated Stimulated Raman Scattering. , 2020, , .		0
13	Polarization envelope helicity dependent photovoltage in GaAs/Al03Ga07As modulation-doped quantum well. Optics Express, 2019, 27, 28091.	1.7	1
14	Invited Article: Spectral focusing with asymmetric pulses for high-contrast pump–probe stimulated Raman scattering microscopy. APL Photonics, 2018, 3, 092405.	3.0	13
15	Coherent Raman Microspectroscopy for Non-Contact and Non-Destructive Measurements of Carrier Concentrations in Wide-Bandgap Semiconductors. , 2018, , .		O
16	Time-resolved circular-dichroism spectrometer for coherent control experiments., 2018,,.		0
17	Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL. Structural Dynamics, 2017, 4, 044033.	0.9	47
18	Direct visualization of a small-molecule drug by phase-modulated stimulated Raman scattering microscopy. , 2017, , .		0

#	Article	IF	CITATIONS
19	Single-beam phase-modulated stimulated Raman scattering microscopy with spectrally focused detection. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1004.	0.9	13
20	41-fs, 35-nJ, Green Pulse Generation from a Yb-doped Fiber Laser System. Optics Express, 2017, 25, 2115.	1.7	4
21	Femtosecond Time-resolved X-ray Absorption Spectroscopy of Liquids Using the SPring-8 Angstrom		

#	Article	IF	CITATIONS
37	The terahertz polarization pulse shaping. , 2013, , .		1
38	In Vivo Molecular Labeling of Halogenated Volatile Anesthetics via Intrinsic Molecular Vibrations using Nonlinear Raman Spectroscopy. Biophysical Journal, 2012, 102, 589a.	0.2	0
39	In vivo Molecular Labeling of Halogenated Volatile Anesthetics using Adaptively Phase-modulated Femtosecond Pulses. , 2012, , .		0
40	Efficient heterodyne CARS measurement by combining spectral phase modulation with temporal delay technique. Optics Express, 2011, 19, 11463.	1.7	14
41	Heterodyne CARS measurement of inhalational anesthetic molecules using adaptively phase-modulated femtosecond pulses. , 2011, , .		0
42	Extreme nonresonant background reduction for rapid phase-modulation CARS spectroscopy by phase sensitive detection. , 2011 , , .		0
43	In vivomolecular labeling of halogenated volatile anesthetics via intrinsic molecular vibrations using nonlinear Raman spectroscopy. Journal of Chemical Physics, 2011, 134, 024525.	1.2	9
44	Improved signal extraction method for single-pulse heterodyne CARS spectroscopy. , 2010, , .		2
45	ULTRAHIGH-REPETITION-RATE PULSE TRAIN WITH ABSOLUTE-PHASE CONTROL PRODUCED BY AN ADIABATIC RAMAN PROCESS. , 2010, , .		2
46	Vibrational Wave-Packet Engineering by Rapid-Scanning Wave-Packet Spectroscopy. The Review of Laser Engineering, 2010, 38, 125-129.	0.0	0
47	Phase-Contrast CARS Spectroscopy with Rapid Phase Modulation. , 2010, , .		1
48	Arbitrary vector shaping of femtosecond pulses by a phase-locked mach-zehnder interferometer. , 2009, , .		0
49	Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping. Review of Scientific Instruments, 2009, 80, 123107.	0.6	12
50	Vibrational wave-packet control in cyanine dye molecules with free and restricted conjugated backbones., 2009,,.		0
51	Real-time wave-packet engineering using a sensitive wave-packet spectrometer and a pulse-shaper. Springer Series in Chemical Physics, 2009, , 991-993.	0.2	0
52	Photoisomerization of All- <i>trans</i> Retinal Triggered with Femtosecond Phase-locked Pulse Pairs. Journal of the Physical Society of Japan, 2008, 77, 014708.	0.7	1
53	Femtosecond wave-packet interferometry in all-trans retinal analyzed by high-performance liquid chromatography. , 2007, , .		0
54	Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses. Journal of Chemical Physics, 2007, 127, 054104.	1.2	13

#	Article	IF	CITATIONS
55	Nonlinear optical response of wave packets on quantized potential energy surfaces. Journal of Chemical Physics, 2007, 127, 194304.	1.2	9
56	ä½ç>,å^¶å¾¡æŠ€è¡"ã,'ç"ïã•,ãŸæ−°è¦çŸãƒ'ルã,¹ãƒ¬ãƒ¼ã,¶ãƒ¼å‰æºã®é−‹ç™ºã•å‰åŒ−å¦å塜å^¶å¾	լ. Kobւտոshi	i, 2 0 07, 56, 50
57	20-fps motion capture of phase-controlled wave-packets for adaptive quantum control. Springer Series in Chemical Physics, 2007, , 175-177.	0.2	1
58	Fourier-synthesis of phase coherent Raman sidebands and full characterization of the temporal waveform. , 2007, , .		0
59	Development of Dual-Wavelength Injection-Locked Pulsed Laser and its Application to Generation of an Ultrahigh- Repetition-Rate Train of Ultrashort Pulses. , 2006, , MB14.		O
60	Sensitive femtosecond wave-packet spectrometer. Optics Communications, 2006, 259, 723-726.	1.0	13
61	10-THz repetition-rate ultrashort-pulse generation by synthesizing phase-coherent Raman-sidebands. , 2006, , .		O
62	Adiabatic driving of maximal-coherence in molecular ensemble and its application to optical devices. The Review of Laser Engineering, 2006, 34, 1-2.	0.0	1
63	20-fps motion capture of phase-controlled wave-packets for adaptive quantum control., 2006,,.		O
64	Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands. Optics Express, 2005, 13, 5628.	1.7	56
65	Femtosecond time-resolved dispersion relation of complex nonlinear refractive index in a semiconductor quantum well. Applied Physics Letters, 2004, 85, 3678-3680.	1.5	3
66	Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control. Optics Communications, 2004, 239, 181-186.	1.0	9
67	Wave packet engineering using a phase-programmable femtosecond optical source. Journal of Modern Optics, 2004, 51, 2685-2692.	0.6	2
68	Study on Semiconductor Materials for Optical Phase-Modulating Devices by Time-Resolved Interferometry. The Review of Laser Engineering, 2004, 32, 711-716.	0.0	0
69	Femtosecond Sagnac interferometer for the measurement of third-order nonlinear optical susceptibilities., 2003,,.		3
70	Three-level picture for chirp-dependent fluorescence yields under femtosecond optical pulse irradiation. Applied Physics Letters, 2003, 82, 2749-2751.	1.5	11
71	Femtosecond wave packet engineering in a cyanine dye molecule. , 2002, 4798, 11.		2
72	Periodic structures in difference phase and transmission spectra studied by a femtosecond Sagnac interferometer. Optics Communications, 2001, 188, 1-9.	1.0	3

#	Article	IF	CITATIONS
73	Large static dipole moment in substituted polyacetylenes obtained by electroabsorption. Chemical Physics Letters, 2000, 318, 499-504.	1.2	13
74	Wave-packet dynamics in a cyanine dye molecule excited with femtosecond chirped pulses. Journal of Chemical Physics, 2000, 113, 7546-7553.	1.2	59
75	EXCITED- AND GROUND-STATE WAVE PACKET DYNAMICS IN ORGANIC MATERIALS INDUCED BY FEMTOSECOND CHIRPED PULSES. , 2000, , .		O
76	Ultrafast exciton and excited-exciton dynamics in J-aggregates of three-level porphyrin molecules. Journal of Chemical Physics, 1999, 110, 5844-5850.	1.2	64
77	Franz–Keldysh oscillation in the interband absorption spectrum of one-dimensional bis(dimethylglyoximato)platinum(II) complex. Chemical Physics Letters, 1999, 302, 609-614.	1.2	15
78	Anomalous 1-ps relaxation of excited exciton in J-aggregates of three-level molecules. Springer Series in Chemical Physics, 1998, , 517-519.	0.2	0
79	Hierarchical structure of one-dimensional J-aggregates. Journal of Luminescence, 1997, 72-74, 38-40.	1.5	32
80	Novel interferometers for femtosecond phase spectroscopy. Journal of Nuclear Materials, 1997, 248, 386-391.	1.3	2
81	Multiple reflection correction in the determination of the complex electro-optic constant using a Mach-Zehnder interferometer. Chemical Physics Letters, 1997, 266, 153-160.	1.2	7
82	Hierarchical Structure in Oriented J-aggregates. , 1996, , 41-65.		5
83	Femtosecond Nonlinear Optical Response in $<$ font> $Jfont>-Aggregates: Exciton Dynamics and Stimulated Raman Process. , 1996, , 161-180.$		6
84	Electroabsorption of a new urethane-substituted polydiacetylene PDA-5BCMU-4A in a film. Chemical Physics Letters, 1996, 255, 385-392.	1.2	12
85	Optical properties of semiconductor quantum dots in magnetic fields. Journal of Luminescence, 1996, 70, 144-157.	1.5	8
86	Magnetic Field Effects in Direct- and Indirect-Gap Semiconductor Quantum Dots. Japanese Journal of Applied Physics, 1995, 34, 125.	0.8	1
87	Femtosecond inverse Raman spectrum of molecular J-aggregates. Journal of Raman Spectroscopy, 1995, 26, 553-559.	1.2	11
88	Wavelength and polarization dependence of spectral hole-burning efficiency in highly oriented Jaggregates. Chemical Physics Letters, 1995, 240, 210-215.	1,2	30
89	Quantum efficiency of the hole formation in highly oriented J-aggregates measured by the polarization dependent hole burning. Journal of Luminescence, 1995, 64, 239-243.	1.5	5
90	All-optical material characterization techniques and optical data links by the application of bistability in luminescence. Physica Scripta, 1995, 51, 541-544.	1.2	2

#	Article	IF	CITATIONS
91	Transmittance Bistability of CdS at 632.8 nm Induced by the 514.5 nm Line. Japanese Journal of Applied Physics, 1995, 34, L1452-L1454.	0.8	1
92	Femtosecond Sagnac interferometer for phase spectroscopy. Optics Letters, 1995, 20, 1550.	1.7	46
93	Complex electroâ€optic constants of dyeâ€doped polymer films determined with a Mach–Zehnder interferometer. Journal of Applied Physics, 1995, 77, 4935-4940.	1.1	21
94	Possibility of Analyzing the Type of Impurities in Semiconductors by Application of Bistability in Luminescence. Japanese Journal of Applied Physics, 1994, 33, L776-L778.	0.8	5
95	Determination of complex tensor components of electroâ€optic constants of dyeâ€doped polymer films with a Mach–Zehnder interferometer. Applied Physics Letters, 1994, 65, 1605-1607.	1.5	24
96	Femtosecond nonlinear optical dynamics of excitons in J-aggregates. Chemical Physics Letters, 1994, 218, 67-72.	1.2	214
97	Giant static dipole moment change on electronic excitation in highly oriented J-aggregates. Chemical Physics Letters, 1994, 220, 251-256.	1.2	60
98	Magnetic field dependence of optical absorption in Si nanocrystallites: A quantum size effect. Solid State Communications, 1994, 92, 665-668.	0.9	18
99	New model of excitonic bands and molecular arrangement of highly oriented J-aggregates in polymer films prepared by a novel method. Journal of Luminescence, 1994, 60-61, 812-815.	1.5	16
100	Ultrafast nonlinear optical properties of J-aggregates and new preparation method of oriented films at room temperature., 1994, 2144, 128.		0
101	New fabrication method for highly orientedJaggregates dispersed in polymer films. Applied Physics Letters, 1993, 63, 577-579.	1.5	143
102	Largegvalue in CuCl semiconductor microcrystallites. Physical Review B, 1993, 47, 16024-16027.	1.1	18
103	Superradiative emission from CdS microcrystallites. Journal of Crystal Growth, 1992, 117, 617-621.	0.7	16
104	Excitonic Superradiance and Its Quenching by Confined-Acoustic Phonons in CdS Microcrystallites. , 1992, , 153-159.		0
105	Quenching of the superradiative decay by confined acoustic-phonons in CdS microcrystallites. Journal of Luminescence, 1991, 48-49, 269-272.	1.5	21
106	Superradiance quenching by confined acoustic phonons in chemically prepared CdS microcrystallites. Journal of Chemical Physics, 1991, 94, 4131-4140.	1.2	69
107	Size effects on luminescence dynamics of CdS microcrystallites embedded in polymer films. Chemical Physics Letters, 1991, 183, 113-118.	1.2	73
108	Study of excitons in microcrystallites: clearly resolved peaks by modulation spectroscopy and femtosecond dephasing resolved with incoherent light., 1990, 1216, 105.		3

#	Article	IF	CITATIONS
109	Transport properties of photoexcited carriers in a fibonacci superlattice. Solid State Communications, 1990, 75, 955-961.	0.9	38
110	Ultrafast Dephasing Measurement by Transient Four-Wave Mixing. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 182, 125-137.	0.3	0
111	Measurement of dephasing time using incoherent light in the Kerr shutter configuration. Optics Letters, 1989, 14, 453.	1.7	20
112	Single-shot Measurement of Phase Shift using a Spectral Phase Interferometer., 0,,.		0