
Xianjia Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5817507/publications.pdf Version: 2024-02-01

XIANIIA DENC

#	Article	IF	CITATIONS
1	Improving removal rate and efficiency of As(V) by sulfide from strongly acidic wastewater in a modified photochemical reactor. Environmental Technology (United Kingdom), 2022, 43, 2329-2341.	2.2	1
2	Calcium sulfide-organosilicon complex for sustained release of H2S in strongly acidic wastewater: Synthesis, mechanism and efficiency. Journal of Hazardous Materials, 2022, 421, 126745.	12.4	14
3	The Recycling of Acid Wastewater with High Concentrations of Organic Matter: Recovery of H2SO4 and Preparation of Activated Carbon. Water (Switzerland), 2022, 14, 183.	2.7	3
4	Clean and effective removal of Cl(-I) from strongly acidic wastewater by PbO2. Journal of Environmental Sciences, 2022, 120, 1-8.	6.1	5
5	A review on the removal of Cl(-I) with high concentration from industrial wastewater: Approaches and mechanisms. Science of the Total Environment, 2022, 824, 153909.	8.0	23
6	Reductive Removal and Recovery of As(V) and As(III) from Strongly Acidic Wastewater by a UV/Formic Acid Process. Environmental Science & Technology, 2022, 56, 9732-9743.	10.0	12
7	H2S release rate strongly affects particle size and settling performance of metal sulfides in acidic wastewater: The role of homogeneous and heterogeneous nucleation. Journal of Hazardous Materials, 2022, 438, 129484.	12.4	9
8	Removal of Cl(-I) from strongly acidic wastewater containing Cu(II) by complexation-precipitation using thiourea: Efficiency enhancement by ascorbic acid. Journal of Hazardous Materials, 2021, 402, 123836.	12.4	18
9	A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism. Journal of Hazardous Materials, 2021, 403, 124039.	12.4	20
10	Sulfate radical-based removal of chloride ion from strongly acidic wastewater: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 410, 124540.	12.4	27
11	Hydrophilicity/hydrophobicity of metal sulfide particles as a determinator of aggregation performance in wastewater. Journal of Water Process Engineering, 2021, 40, 101900.	5.6	10
12	Removal of Ni(II) from strongly acidic wastewater by chelating precipitation and recovery of NiO from the precipitates. Journal of Environmental Sciences, 2021, 104, 365-375.	6.1	16
13	Photo-induced dissolution of Bi2O3 during photocatalysis reactions: Mechanisms and inhibition method. Journal of Hazardous Materials, 2021, 412, 125267.	12.4	23
14	Recovery of Re(VII) from strongly acidic wastewater using sulphide: Acceleration by UV irradiation and the underlying mechanism. Journal of Hazardous Materials, 2021, 416, 126233.	12.4	12
15	Chemical solidification/stabilization of arsenic sulfide and oxide mixed wastes using elemental sulfur: Efficiencies, mechanisms and long-term stabilization enhancement by dicyclopentadiene. Journal of Hazardous Materials, 2021, 419, 126390.	12.4	4
16	Specific H ₂ S Release from Thiosulfate Promoted by UV Irradiation for Removal of Arsenic and Heavy Metals from Strongly Acidic Wastewater. Environmental Science & Technology, 2020, 54, 14076-14084.	10.0	33
17	Removal of Cl(â^'l) from strongly acidic wastewater using NaBiO3: A process of simultaneous oxidation and precipitation. Desalination, 2020, 491, 114566.	8.2	10
18	UV-Improved Removal of Chloride Ions from Strongly Acidic Wastewater Using Bi ₂ O ₃ : Efficiency Enhancement and Mechanisms. Environmental Science & Technology, 2019, 53, 10371-10378.	10.0	30

Xianjia Peng

#	Article	IF	CITATIONS
19	UV light irradiation improves the aggregation and settling performance of metal sulfide particles in strongly acidic wastewater. Water Research, 2019, 163, 114860.	11.3	22
20	Effect of fullerol nanoparticles on the transport and release of copper ions in saturated porous media. Environmental Science and Pollution Research, 2019, 26, 15255-15261.	5.3	1
21	The mechanism for promoted oxygenation of V(IV) by goethite: Positive effect of surface hydroxyl groups. Journal of Hazardous Materials, 2019, 369, 254-260.	12.4	7
22	Removal of Chloride Ions from Strongly Acidic Wastewater Using Cu(0)/Cu(II): Efficiency Enhancement by UV Irradiation and the Mechanism for Chloride Ions Removal. Environmental Science & Technology, 2019, 53, 383-389.	10.0	36
23	Organic ligand induced release of vanadium from the dissolution of stone coal oxide ore. Environmental Science and Pollution Research, 2019, 26, 17891-17900.	5.3	3
24	Mechanism for Photopromoted Release of Vanadium from Vanadium Titano-Magnetite. Environmental Science & Technology, 2018, 52, 1954-1962.	10.0	12
25	Removal of Arsenic from Strongly Acidic Wastewater Using Phosphorus Pentasulfide As Precipitant: UV-Light Promoted Sulfuration Reaction and Particle Aggregation. Environmental Science & Technology, 2018, 52, 4794-4801.	10.0	46
26	Release kinetics of vanadium from vanadium titano-magnetite: The effects of pH, dissolved oxygen, temperature and foreign ions. Journal of Environmental Sciences, 2018, 64, 298-305.	6.1	14
27	Release kinetics of vanadium from vanadium (III, IV and V) oxides: Effect of pH, temperature and oxide dose. Journal of Environmental Sciences, 2018, 67, 96-103.	6.1	22
28	UV-Light-Induced Aggregation of Arsenic and Metal Sulfide Particles in Acidic Wastewater: The Role of Free Radicals. Environmental Science & Technology, 2018, 52, 10719-10727.	10.0	28
29	Mechanisms of UV-Light Promoted Removal of As(V) by Sulfide from Strongly Acidic Wastewater. Environmental Science & Technology, 2017, 51, 12583-12591.	10.0	42
30	Fullerol-facilitated transport of copper ions in water-saturated porous media: Influencing factors and mechanism. Journal of Hazardous Materials, 2017, 340, 96-103.	12.4	10
31	Removal of fluoride from zinc sulfate solution by in situ Fe(III) in a cleaner desulfuration process. Journal of Cleaner Production, 2017, 164, 163-170.	9.3	20
32	Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants. Journal of Environmental Sciences, 2017, 56, 281-289.	6.1	12
33	Arsenic retention and transport behavior in the presence of typical anionic and nonionic surfactants. Journal of Environmental Sciences, 2016, 39, 249-258.	6.1	5
34	Aging of solidified/stabilized electrolytic manganese solid waste with accelerated carbonation and aging inhibition. Environmental Science and Pollution Research, 2016, 23, 24195-24204.	5.3	7
35	Effects of red mud addition on cadmium accumulation in cole (Brassica campestris L.) under high fertilization conditions. Journal of Soils and Sediments, 2016, 16, 2097-2104.	3.0	11
36	Aqueous stability and mobility of C60 complexed by sodium dodecyl benzene sulfonate surfactant. Journal of Environmental Sciences, 2016, 42, 89-96.	6.1	7

Xianjia Peng

#	Article	IF	CITATIONS
37	Silver nanoparticles decorated anatase TiO 2 nanotubes for removal of pentachlorophenol from water. Journal of Colloid and Interface Science, 2015, 453, 100-106.	9.4	28
38	Immobilization of phosphorus, copper, zinc and arsenic in swine manure by activated red mud. Environmental Earth Sciences, 2014, 71, 2005-2014.	2.7	1
39	Evaluation of chemical immobilization treatments for reducing arsenic transport in red mud. Environmental Earth Sciences, 2013, 70, 1775-1782.	2.7	6
40	Preparation of coagulant from red mud and semi-product of polyaluminum chloride for removal of phosphate from water. Desalination and Water Treatment, 2012, 40, 153-158.	1.0	10
41	Immobilization of Cd, Zn and Pb in sewage sludge using red mud. Environmental Earth Sciences, 2012, 66, 1321-1328.	2.7	13
42	Reduction of phosphorus release from high phosphorus soil by red mud. Environmental Earth Sciences, 2012, 65, 581-588.	2.7	15
43	Immobilization of phosphorus in sewage sludge using inorganic amendments. Environmental Earth Sciences, 2011, 63, 221-228.	2.7	9
44	Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal. Desalination, 2011, 273, 414-420.	8.2	61
45	Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation. Journal of Hazardous Materials, 2010, 178, 1125-1127.	12.4	27
46	Oxidized carbon nanotubes for simultaneous removal of endrin and Cd(Î) from water and their separation from water. Journal of Chemical Technology and Biotechnology, 2009, 84, 275-278.	3.2	18
47	Aqueous stability of oxidized carbon nanotubes and the precipitation by salts. Journal of Hazardous Materials, 2009, 165, 1239-1242.	12.4	54
48	Sorption of endrin to montmorillonite and kaolinite clays. Journal of Hazardous Materials, 2009, 168, 210-214.	12.4	37
49	Montmorillonite–Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration. Chemosphere, 2006, 63, 300-306.	8.2	91
50	Adsorption of p-Nitrophenol onto PDMDAAC-Modified Bentonites. Adsorption Science and Technology, 2005, 23, 407-416.	3.2	3
51	Zirconia Pillared Montmorillonite for Removal of Arsenate from Water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1055-1067.	1.7	6