Todd Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816997/publications.pdf

Version: 2024-02-01

		94269	62479
106	7,279	37	80
papers	citations	h-index	g-index
116	116	116	12158
	110	110	
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 2010, 28, 848-855.	9.4	1,080
2	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	5. 2	543
3	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	13.7	389
4	Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nature Medicine, 2017, 23, 878-884.	15.2	285
5	Orchestrating liver development. Development (Cambridge), 2015, 142, 2094-2108.	1.2	281
6	Sphingosine 1-phosphate signalling. Development (Cambridge), 2014, 141, 5-9.	1.2	235
7	Distinct Functions Are Implicated for the GATA-4, -5, and -6 Transcription Factors in the Regulation of Intestine Epithelial Cell Differentiation. Molecular and Cellular Biology, 1998, 18, 2901-2911.	1.1	214
8	High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain. Cell Stem Cell, 2017, 21, 274-283.e5.	5.2	214
9	Boron chemicals in diagnosis and therapeutics. Future Medicinal Chemistry, 2013, 5, 653-676.	1.1	208
10	Retinoic acid signaling pathways in development and diseases. Bioorganic and Medicinal Chemistry, 2014, 22, 673-683.	1.4	202
11	TheXenopusGATA-4/5/6 Genes Are Associated with Cardiac Specification and Can Regulate Cardiac-Specific Transcription during Embryogenesis. Developmental Biology, 1996, 174, 258-270.	0.9	196
12	Gata4 regulates the formation of multiple organs. Development (Cambridge), 2005, 132, 4005-4014.	1.2	177
13	Redox Modification of Nuclear Actin by MICAL-2 Regulates SRF Signaling. Cell, 2014, 156, 563-576.	13.5	142
14	Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell, 2017, 20, 675-688.e6.	5. 2	128
15	SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metabolism, 2021, 33, 1577-1591.e7.	7.2	123
16	Hepatocyte Growth Factor Induces GATA-4 Phosphorylation and Cell Survival in Cardiac Muscle Cells. Journal of Biological Chemistry, 2003, 278, 4705-4712.	1.6	109
17	Reversal of GATA-6 Downregulation Promotes Smooth Muscle Differentiation and Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Artery. Circulation Research, 1999, 84, 647-654.	2.0	107
18	An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell, 2016, 19, 326-340.	5.2	98

#	Article	IF	Citations
19	Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nature Genetics, 2019, 51, 999-1010.	9.4	90
20	AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature, 2013, 500, 89-92.	13.7	78
21	Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence. Cell Reports, 2015, 12, 1133-1143.	2.9	78
22	Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis. , 1998, 22, 263-277.		76
23	Gata5 and Gata6 are functionally redundant in zebrafish for specification of cardiomyocytes. Developmental Biology, 2007, 312, 613-622.	0.9	74
24	A Role for GATA-4/5/6 in the Regulation of Nkx2.5 Expression with Implications for Patterning of the Precardiac Field. Developmental Biology, 1999, 216, 57-71.	0.9	71
25	T-box binding sites are required for activity of a cardiac GATA-4 enhancer. Developmental Biology, 2004, 267, 490-504.	0.9	71
26	BMP-like signals are required after the midblastula transition for blood cell development., 1996, 18, 267-278.		69
27	Sphingosine 1-Phosphate Receptor Signaling Regulates Proper Embryonic Vascular Patterning. Journal of Biological Chemistry, 2013, 288, 2143-2156.	1.6	69
28	ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nature Communications, 2017, 8, 298.	5.8	69
29	QSER1 protects DNA methylation valleys from de novo methylation. Science, 2021, 372, .	6.0	69
30	Regulation of hematopoiesis by retinoid signaling. Experimental Hematology, 2005, 33, 1055-1061.	0.2	66
31	Gata4 directs development of cardiac-inducing endoderm from ES cells. Developmental Biology, 2010, 337, 63-73.	0.9	64
32	Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9818-9823.	3.3	56
33	Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron, 2019, 101, 1089-1098.e4.	3.8	55
34	Anterior Endoderm Is Sufficient to Rescue Foregut Apoptosis and Heart Tube Morphogenesis in an Embryo Lacking Retinoic Acid. Developmental Biology, 2000, 219, 59-70.	0.9	52
35	Inducible Pluripotent Stem Cell–Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in <i>RAF1</i> -Associated Noonan Syndrome. Circulation, 2019, 140, 207-224.	1.6	50
36	SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 2022, 130, 963-977.	2.0	49

#	Article	IF	Citations
37	Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells. Stem Cells Translational Medicine, 2016, 5, 572-579.	1.6	48
38	Retinoid signaling regulates primitive (yolk sac) hematopoiesis. Blood, 2002, 99, 2379-2386.	0.6	45
39	Reduced <i>DOCK4</i> expression leads to erythroid dysplasia in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6359-68.	3.3	45
40	Synthesis of function-oriented 2-phenyl-2H-chromene derivatives using l-pipecolinic acid and substituted guanidine organocatalysts. Tetrahedron Letters, 2010, 51, 2567-2570.	0.7	40
41	An Immuno-Cardiac Model for Macrophage-Mediated Inflammation in COVID-19 Hearts. Circulation Research, 2021, 129, 33-46.	2.0	40
42	Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease. PLoS ONE, 2011, 6, e27945.	1.1	40
43	Biological function of activation-induced cytidine deaminase (AID). Biomedical Journal, 2014, 37, 269.	1.4	40
44	Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Developmental Biology, 2018, 435, 41-55.	0.9	39
45	Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules, 2022, 27, 2615.	1.7	39
46	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	2.3	37
47	An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Reports, 2021, 37, 109920.	2.9	36
48	GATA factors efficiently direct cardiac fate from embryonic stem cells. Development (Cambridge), 2013, 140, 1639-1644.	1.2	34
49	Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling. Stem Cell Reports, 2015, 4, 1089-1102.	2.3	34
50	A Forward Chemical Screen Using Zebrafish Embryos with Novel 2‧ubstituted 2Hâ€Chromene Derivatives. Chemical Biology and Drug Design, 2009, 73, 339-345.	1.5	33
51	Using hESCs to Probe the Interaction of the Diabetes-Associated Genes CDKAL1 and MT1E. Cell Reports, 2017, 19, 1512-1521.	2.9	32
52	BCL6 Evolved to Enable Stress Tolerance in Vertebrates and Is Broadly Required by Cancer Cells to Adapt to Stress. Cancer Discovery, 2019, 9, 662-679.	7.7	31
53	Pre- and peri-implantation Zika virus infection impairs fetal development by targeting trophectoderm cells. Nature Communications, 2019, 10, 4155.	5.8	30
54	Elavl1a regulates zebrafish erythropoiesis via posttranscriptional control of gata1. Blood, 2014, 123, 1384-1392.	0.6	29

TODD EVANS

#	Article	ΙF	CITATION
55	A hPSC-based platform to discover gene-environment interactions that impact human \hat{l}^2 -cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	5.8	29
56	Yaf2 Inhibits Caspase 8-mediated Apoptosis and Regulates Cell Survival during Zebrafish Embryogenesis. Journal of Biological Chemistry, 2006, 281, 28782-28793.	1.6	28
57	Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Developmental Biology, 2013, 381, 389-400.	0.9	28
58	Concise Review: Application of Chemically Modified mRNA in Cell Fate Conversion and Tissue Engineering. Stem Cells Translational Medicine, 2019, 8, 833-843.	1.6	28
59	Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chemical Biology, 2018, 13, 1824-1831.	1.6	24
60	A Forward Chemical Screen in Zebrafish Identifies a Retinoic Acid Derivative with Receptor Specificity. PLoS ONE, 2010, 5, e10004.	1.1	24
61	The tbx/bHLH transcription factor <i>mga</i> regulates <i>gata4</i> and organogenesis. Developmental Dynamics, 2010, 239, 535-547.	0.8	23
62	Use of zebrafish in chemical biology and drug discovery. Future Medicinal Chemistry, 2013, 5, 2103-2116.	1.1	23
63	Prospective Isolation of ISL1+ Cardiac Progenitors from Human ESCs forÂMyocardial Infarction Therapy. Stem Cell Reports, 2018, 10, 848-859.	2.3	23
64	Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation. Cell Reports, 2016, 15, 2063-2075.	2.9	22
65	TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Reports, 2019, 26, 720-732.e4.	2.9	22
66	Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling. Development (Cambridge), 2013, 140, 3787-3798.	1.2	19
67	Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine, 2020, 60, 103024.	2.7	19
68	Fishing for a WNT-PGE2 Link: \hat{I}^2 -Catenin Is Caught in the Stem Cell Net-work. Cell Stem Cell, 2009, 4, 280-282.	5.2	17
69	TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies. IScience, 2019, 19, 267-280.	1.9	17
70	Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK- $\hat{1}^2$. Cell Chemical Biology, 2019, 26, 926-935.e6.	2.5	17
71	A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity. Cardiovascular Research, 2020, 116, 658-670.	1.8	17

72

#	Article	lF	CITATIONS
73	Nonâ€core subunit elF3h of translation initiation factor elF3 regulates zebrafish embryonic development. Developmental Dynamics, 2010, 239, 1632-1644.	0.8	16
74	Design and synthesis of potential new apoptosis agents: hybrid compounds containing perillyl alcohol and new constrained retinoids. Tetrahedron Letters, 2010, 51, 1462-1466.	0.7	16
75	Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 2011, 117, 6489-6497.	0.6	16
76	BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 2014, 124, 393-402.	0.6	14
77	Maternal or zygotic sphingosine kinase is required to regulate zebrafish cardiogenesis. Developmental Dynamics, 2015, 244, 948-954.	0.8	14
78	The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. ELife, 2017, 6, .	2.8	14
79	Tet Proteins Regulate Neutrophil Granulation in Zebrafish through Demethylation of socs3b mRNA. Cell Reports, 2021, 34, 108632.	2.9	13
80	Specificity, redundancy and dosage thresholds among <i>gata4/5/6</i> genes during zebrafish cardiogenesis. Biology Open, 2020, 9, .	0.6	11
81	Sirt1 promotes tissue regeneration in zebrafish through regulating the mitochondrial unfolded protein response. IScience, 2021, 24, 103118.	1.9	10
82	Epigenetic Regulation of Cardiac Development and Disease through DNA Methylation. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 1-10.	1.8	10
83	Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Reports, 2021, 37, 110095.	2.9	10
84	Embryonic stem cells as a model for cardiac development and disease. Drug Discovery Today: Disease Models, 2008, 5, 147-155.	1.2	9
85	Heart chamber size in zebrafish is regulated redundantly by duplicated <i>tbx2</i> genes. Developmental Dynamics, 2011, 240, 1548-1557.	0.8	9
86	Design and synthesis of boron containing potential pan-RAR inverse agonists. Tetrahedron Letters, 2012, 53, 1316-1318.	0.7	8
87	Design and synthesis of 3,5-disubstituted 1,2,4-oxadiazole containing retinoids from a retinoic acid receptor agonist. Tetrahedron Letters, 2011, 52, 2433-2435.	0.7	7
88	Regulation of a Vascular Plexus by gata4 Is Mediated in Zebrafish through the Chemokine sdf1a. PLoS ONE, 2012, 7, e46844.	1.1	7
89	Efficient Generation of Cardiac Purkinjeâ€like Cells from Embryonic Stem Cells by Activating cAMP Signaling. Current Protocols in Stem Cell Biology, 2017, 40, 1F.16.1-1F.16.13.	3.0	6
90	The small molecule DIPQUO promotes osteogenic differentiation via inhibition of glycogen synthase kinase 3-beta signaling. Journal of Biological Chemistry, 2021, 296, 100696.	1.6	6

#	Article	IF	CITATIONS
91	A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway. Blood Purification, 2013, 35, 265-269.	0.9	5
92	Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the NaÃ-ve Pluripotent State During Reprogramming. Stem Cells, 2019, 37, 1003-1017.	1.4	5
93	Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids. Journal of Molecular Cell Biology, 2020, 12, 580-592.	1.5	4
94	Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest. Stem Cells, 2020, 38, 613-623.	1.4	4
95	Constitutively Activating GNAS Somatic Mutation in Right Ventricular Outflow Tract Tachycardia. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010082.	2.1	4
96	New Animal Models Reveal Stage-Specific Hematopoietic Functions for the BMP Signaling Pathway Blood, 2004, 104, 133-133.	0.6	4
97	Congenital heart disease in a dish: progress toward understanding patient-specific mutations. Journal of Thoracic Disease, 2017, 9, E510-E513.	0.6	4
98	Boron Compounds for Molecular Probes and Therapeutics. , 2018, , 145-165.		3
99	Synthesis of Pinacolylboronate-Substituted Stilbenes and their application to the synthesis of boron capped polyenes. Journal of Organometallic Chemistry, 2015, 798, 51-59.	0.8	2
100	Comments on â€~An airway organoid-based screen identifies a role for the HIF1αâ€'glycolysis axis in SARS-CoV-2 infection'. Journal of Molecular Cell Biology, 2021, , .	1.5	1
101	A dual SHOX2:GFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. IScience, 2022, 25, 104153.	1.9	1
102	Regulation of RNA Methylation by TET Enzymes. RNA Technologies, 2021, , 423-433.	0.2	0
103	Specificity of Smad Signaling during Primitive Erythropoiesis Blood, 2004, 104, 2785-2785.	0.6	0
104	Functional Distinctions for Smad1 and Smad5 during Hematopoiesis Revealed by the Zebrafish Model System Blood, 2005, 106, 3606-3606.	0.6	0
105	Design, Synthesis and Biological Evaluation of A Boron Containing Retinoid As a Novel Therapeutic Agent for Acute Promyelocytic Leukemia. Blood, 2011, 118, 5008-5008.	0.6	0
106	Abstract 16005: Highly Efficient Derivation of Human Pacemaker Cells From Pluripotent Stem Cells in Chemically Defined Conditions. Circulation, 2015, 132, .	1.6	0