Germain Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Constant Power Loads Using Switching Converters Under Sliding-Mode Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 524-535.	5.4	16
2	A Unified Approach for the Control of Power Electronics Converters. Part l—Stabilization and Regulation. Applied Sciences (Switzerland), 2021, 11, 631.	2.5	6
3	Special Issue "Advances in Control of Power Electronic Converters― Applied Sciences (Switzerland), 2021, 11, 4585.	2.5	Ο
4	A Unified Approach for the Control of Power Electronics Converters. Part II: Tracking. Applied Sciences (Switzerland), 2021, 11, 7618.	2.5	3
5	Diffusive Representation: A Powerful Method to Analyze Temporal Signals from Metal-Oxide Gas Sensors Used in Pulsed Mode. Electronics (Switzerland), 2021, 10, 2578.	3.1	0
6	Min-Type Control Strategy of a DC–DC Synchronous Boost Converter. IEEE Transactions on Industrial Electronics, 2020, 67, 3167-3179.	7.9	32
7	A hybrid control strategy for quadratic boost converters with inductor currents estimation. Control Engineering Practice, 2020, 103, 104602.	5.5	16
8	Double Sliding-Surface Multiloop Control Reducing Semiconductor Voltage Stress on the Boost Inverter. Applied Sciences (Switzerland), 2020, 10, 4912.	2.5	5
9	Current Control of the Coupled-Inductor Buck–Boost DC–DC Switching Converter Using a Model Predictive Control Approach. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3348-3360.	5.4	20
10	Robust hybrid control law for a boost inverter. Control Engineering Practice, 2020, 101, 104492.	5.5	6
11	Analysis, Design, and Implementation of a Static Conductance-Based MPPT Method. IEEE Transactions on Power Electronics, 2019, 34, 1960-1979.	7.9	27
12	Sliding Mode Control of the Isolated Bridgeless SEPIC High Power Factor Rectifier Interfacing an AC Source with a LVDC Distribution Bus. Energies, 2019, 12, 3463.	3.1	5
13	Practical Stabilization of Switched Affine Systems With Dwell-Time Guarantees. IEEE Transactions on Automatic Control, 2019, 64, 4811-4817.	5.7	65
14	Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System. Energies, 2019, 12, 61.	3.1	14
15	On the Practical Stability of Hybrid Control Algorithm With Minimum Dwell Time for a DC–AC Converter. IEEE Transactions on Control Systems Technology, 2019, 27, 2581-2588.	5.2	12
16	Steady-State Analysis of Inductor Conduction Modes in the Quadratic Boost Converter. IEEE Transactions on Power Electronics, 2017, 32, 2253-2264.	7.9	32
17	Using the slidingâ \in mode control approach for analysis and design of the boost inverter. IET Power Electronics, 2016, 9, 1625-1634.	2.1	43
18	Hybrid dynamic modeling and control of switched affine systems: Application to DC-DC converters. , 2015		42

GERMAIN GARCIA

#	Article	IF	CITATIONS
19	A simple digital sinusoidal reference generator for grid-synchronized power electronics applications. , 2015, , .		7
20	Impedance Matching in Photovoltaic Systems Using Cascaded Boost Converters and Sliding-Mode Control. IEEE Transactions on Power Electronics, 2015, 30, 3185-3199.	7.9	122
21	Robust Sliding-Mode Control Design for a Voltage Regulated Quadratic Boost Converter. IEEE Transactions on Power Electronics, 2015, 30, 2313-2327.	7.9	166
22	Control of a threeâ€phase AC/DC VIENNA converter based on the sliding mode lossâ€free resistor approach. IET Power Electronics, 2014, 7, 1073-1082.	2.1	37
23	Analysis and design of a slidingâ€mode strategy for startâ€up control and voltage regulation in a buck converter. IET Power Electronics, 2013, 6, 52-59.	2.1	35
24	Design of Polynomial Control Laws for Polynomial Systems Subject to Actuator Saturation. IEEE Transactions on Automatic Control, 2013, 58, 1758-1770.	5.7	52