Serge A Van De Pavert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816265/publications.pdf

Version: 2024-02-01

36 papers 2,846 citations

331670 21 h-index 35 g-index

40 all docs

40 docs citations

40 times ranked

4683 citing authors

#	Article	IF	CITATIONS
1	Innate Lymphoid Cells in the Central Nervous System. Frontiers in Immunology, 2022, 13, 837250.	4.8	7
2	Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity, 2022, 55, 606-622.e6.	14.3	8
3	Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nature Communications, 2022, 13, 1985.	12.8	14
4	Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomedical Journal, 2021, 44, 123-132.	3.1	24
5	1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Developmental Cell, 2021, 56, 3128-3145.e15.	7.0	6
6	Distinct Waves from the Hemogenic Endothelium Give Rise to Layered Lymphoid Tissue Inducer Cell Ontogeny. Cell Reports, 2020, 32, 108004.	6.4	33
7	Deciphering the Crosstalk Between Myeloid-Derived Suppressor Cells and Regulatory T Cells in Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 2019, 10, 3070.	4.8	90
8	SunRiSE: measuring translation elongation at single cell resolution by flow cytometry. Journal of Cell Science, 2018, 131, .	2.0	32
9	CXCL12â€mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus. Glia, 2018, 66, 1566-1576.	4.9	18
10	Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. Journal of Immunology, 2018, 201, 215-229.	0.8	31
11	An Evolutionarily Conserved Role for Polydom/Svep1 During Lymphatic Vessel Formation. Circulation Research, 2017, 120, 1263-1275.	4.5	59
12	Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. International Immunology, 2016, 28, 35-42.	4.0	43
13	The evolution of innate lymphoid cells. Nature Immunology, 2016, 17, 790-794.	14.5	140
14	Identification of Natural ROR \hat{I}^3 Ligands that Regulate the Development of Lymphoid Cells. Cell Metabolism, 2015, 21, 286-298.	16.2	193
15	Development of Secondary Lymphoid Organs in Relation to Lymphatic Vasculature. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 81-91.	1.6	17
16	Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature, 2014, 508, 123-127.	27.8	321
17	Involvement of neurons and retinoic acid in lymphatic development: new insights in increased nuchal translucency. Prenatal Diagnosis, 2014, 34, 1312-1319.	2.3	18
18	Bone spicule pigment formation in retinitis pigmentosa: insights from a mouse model. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 1063-1070.	1.9	44

#	Article	IF	CITATIONS
19	New insights into the development of lymphoid tissues. Nature Reviews Immunology, 2010, 10, 664-674.	22.7	503
20	Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography. PLoS ONE, 2009, 4, e7507.	2.5	183
21	Cutting Edge: The Chemokine Receptor CXCR3 Retains Invariant NK T Cells in the Thymus. Journal of Immunology, 2009, 183, 2213-2216.	0.8	39
22	Lymph sacs are not required for the initiation of lymph node formation. Development (Cambridge), 2009, 136, 29-34.	2.5	52
23	Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunology, 2009, 10, 1193-1199.	14.5	266
24	A CXCR3â€dependent signaling event retains mature Valpha14 invariant natural killer T cells in the murine thymus. FASEB Journal, 2008, 22, 371-371.	0.5	0
25	A Single Amino Acid Substitution (Cys249Trp) in Crb1 Causes Retinal Degeneration and Deregulates Expression of Pituitary Tumor Transforming Gene Pttg1. Journal of Neuroscience, 2007, 27, 564-573.	3.6	77
26	Crb1 is a determinant of retinal apical MÃ $\frac{1}{4}$ ller glia cell features. Glia, 2007, 55, 1486-1497.	4.9	62
27	Mpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse. Human Molecular Genetics, 2006, 15, 1291-1302.	2.9	46
28	In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Research, 2005, 45, 3512-3519.	1.4	172
29	Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. Journal of Cell Science, 2004, 117, 4169-4177.	2.0	220
30	Crumbs homologue 1 in polarity and blindness. Biochemical Society Transactions, 2004, 32, 828-830.	3.4	13
31	Comparison of anterior-posterior development in the porcine versus chicken embryo, using goosecoid expression as a marker. Reproduction, Fertility and Development, 2001, 13, 177.	0.4	6
32	Localization of an activin/activin receptor system in the porcine ovary. Molecular Reproduction and Development, 2001, 60, 463-471.	2.0	24
33	Uterine-embryonic interaction in pig: Activin, follistatin, and activin receptor II in uterus and embryo during early gestation. Molecular Reproduction and Development, 2001, 59, 390-399.	2.0	16
34	Expression of the organizer specific homeobox geneGoosecoid (gsc) in porcine embryos. Molecular Reproduction and Development, 2000, 55, 1-7.	2.0	17
35	Paracrine Interactions within the Pituitary Gland. Annals of the New York Academy of Sciences, 1998, 839, 239-243.	3.8	19
36	Effects of vasopressin and elimination of corticotropin-releasing hormone-target cells on pro-opiomelanocortin mRNA levels and adrenocorticotropin secretion in ovine anterior pituitary cells. Journal of Endocrinology, 1997, 154, 139-147.	2.6	30