Qiliang Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5816113/publications.pdf

Version: 2024-02-01

		236833	276775
54	1,856	25	41
papers	citations	h-index	g-index
60	60	60	2422
60	60	60	2433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nature Communications, 2021, 12, 961.	5.8	204
2	CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunology, Immunotherapy, 2019, 68, 365-377.	2.0	180
3	Kaposi's Sarcoma-Associated Herpesvirus Latent Protein LANA Interacts with HIF-1α To Upregulate RTA Expression during Hypoxia: Latency Control under Low Oxygen Conditions. Journal of Virology, 2006, 80, 7965-7975.	1.5	117
4	Molecular Biology of Kaposi's Sarcoma-associated Herpesvirus and Related Oncogenesis. Advances in Virus Research, 2010, 78, 87-142.	0.9	110
5	Epstein–Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology, 2009, 388, 236-247.	1.1	96
6	A Potential Î \pm -Helix Motif in the Amino Terminus of LANA Encoded by Kaposi's Sarcoma-Associated Herpesvirus Is Critical for Nuclear Accumulation of HIF-1Î \pm in Normoxia. Journal of Virology, 2007, 81, 10413-10423.	1.5	75
7	Epstein-Barr Virus Nuclear Antigen 3C Facilitates G1-S Transition by Stabilizing and Enhancing the Function of Cyclin D1. PLoS Pathogens, 2011, 7, e1001275.	2.1	70
8	H2AX Phosphorylation Is Important for LANA-Mediated Kaposi's Sarcoma-Associated Herpesvirus Episome Persistence. Journal of Virology, 2013, 87, 5255-5269.	1.5	61
9	Bub1 and CENP-F Can Contribute to Kaposi's Sarcoma-Associated Herpesvirus Genome Persistence by Targeting LANA to Kinetochores. Journal of Virology, 2010, 84, 9718-9732.	1.5	57
10	Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis. PLoS Pathogens, 2011, 7, e1002418.	2.1	56
11	A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency. PLoS Pathogens, 2013, 9, e1003750.	2.1	55
12	GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight, 2020, 5, .	2.3	51
13	Association Between Cancer Incidence and Mortality in Web-Based Data in China: Infodemiology Study. Journal of Medical Internet Research, 2019, 21, e10677.	2.1	47
14	Inhibition of KAP1 Enhances Hypoxia-Induced Kaposi's Sarcoma-Associated Herpesvirus Reactivation through RBP-Jκ. Journal of Virology, 2014, 88, 6873-6884.	1.5	45
15	EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation. PLoS Pathogens, 2014, 10, e1004304.	2.1	43
16	Kaposi's Sarcoma-Associated Herpesvirus Inhibits Interleukin-4-Mediated STAT6 Phosphorylation To Regulate Apoptosis and Maintain Latency. Journal of Virology, 2010, 84, 11134-11144.	1.5	42
17	Constitutive Activation of Interleukin-13/STAT6 Contributes to Kaposi's Sarcoma-Associated Herpesvirus-Related Primary Effusion Lymphoma Cell Proliferation and Survival. Journal of Virology, 2015, 89, 10416-10426.	1.5	39
18	Kaposi's Sarcoma Herpesvirus Upregulates Aurora A Expression to Promote p53 Phosphorylation and Ubiquitylation. PLoS Pathogens, 2012, 8, e1002566.	2.1	38

#	Article	IF	Citations
19	The RBP-Jκ Binding Sites within the RTA Promoter Regulate KSHV Latent Infection and Cell Proliferation. PLoS Pathogens, 2012, 8, e1002479.	2.1	36
20	Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA. Frontiers in Microbiology, 2016, 7, 334.	1.5	36
21	Critical Role of Regulatory T Cells in the Latency and Stress-Induced Reactivation of HSV-1. Cell Reports, 2018, 25, 2379-2389.e3.	2.9	32
22	The Single RBP-Jκ Site within the LANA Promoter Is Crucial for Establishing Kaposi's Sarcoma-Associated Herpesvirus Latency during Primary Infection. Journal of Virology, 2011, 85, 6148-6161.	1.5	28
23	IRF-4-Mediated CIITA Transcription Is Blocked by KSHV Encoded LANA to Inhibit MHC II Presentation. PLoS Pathogens, 2013, 9, e1003751.	2.1	28
24	Silver nanoparticles selectively induce human oncogenic \hat{l}^3 -herpesvirus-related cancer cell death through reactivating viral lytic replication. Cell Death and Disease, 2019, 10, 392.	2.7	28
25	Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex. Journal of Virology, 2015, 89, 5536-5556.	1.5	27
26	Lactic Acid Downregulates Viral MicroRNA To Promote Epstein-Barr Virus-Immortalized B Lymphoblastic Cell Adhesion and Growth. Journal of Virology, 2018, 92, .	1.5	24
27	Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis. Cell Reports, 2019, 26, 3657-3671.e5.	2.9	20
28	STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus. PLoS Pathogens, 2018, 14, e1007416.	2.1	19
29	HCMV-encoded miR-UL112-3p promotes glioblastoma progression via tumour suppressor candidate 3. Scientific Reports, 2017, 7, 44705.	1.6	18
30	Nuclear Localization and Cleavage of STAT6 Is Induced by Kaposi's Sarcoma-Associated Herpesvirus for Viral Latency. PLoS Pathogens, 2017, 13, e1006124.	2.1	17
31	STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathogens, 2020, 16, e1008447.	2.1	16
32	Proteomic profiling identifies the SIMâ€associated complex of KSHVâ€encoded LANA. Proteomics, 2015, 15, 2023-2037.	1.3	14
33	Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review). International Journal of Oncology, 2016, 49, 1269-1276.	1.4	13
34	Bacterial Infection and Associated Cancers. Advances in Experimental Medicine and Biology, 2017, 1018, 181-191.	0.8	13
35	Detecting Lung Cancer Trends by Leveraging Real-World and Internet-Based Data: Infodemiology Study. Journal of Medical Internet Research, 2020, 22, e16184.	2.1	13
36	Lactate Induces Production of the tRNAHis Half to Promote B-lymphoblastic Cell Proliferation. Molecular Therapy, 2020, 28, 2442-2457.	3.7	11

#	Article	IF	CITATIONS
37	Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Reviews in Medical Virology, 2016, 26, 435-445.	3.9	10
38	Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathogens, 2019, 15, e1008174.	2.1	8
39	KSHV Reprogramming of Host Energy Metabolism for Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 621156.	1.8	8
40	Delayed Antiviral Immune Responses in Severe Acute Respiratory Syndrome Coronavirus Infected Pregnant Mice. Frontiers in Microbiology, 2021, 12, 806902.	1.5	7
41	The Detection and Characterization of Herpes Simplex Virus Type 1 in Confirmed Measles Cases. Scientific Reports, 2019, 9, 12785.	1.6	6
42	Role of SUMOylation in Human Oncogenic Herpesvirus Infection. Virus Research, 2020, 283, 197962.	1.1	6
43	The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virologica Sinica, 2017, 32, 357-368.	1.2	5
44	Common Infections May Lead to Alzheimer's Disease. Virologica Sinica, 2018, 33, 456-458.	1.2	5
45	Comprehensive role of SARSâ€CoVâ€2 spike glycoprotein in regulating host signaling pathway. Journal of Medical Virology, 2022, 94, 4071-4087.	2.5	5
46	Manipulation of the host cell membrane by human \hat{l}^3 -herpesviruses EBV and KSHV for pathogenesis. Virologica Sinica, 2016, 31, 395-405.	1.2	4
47	A System Based on Novel Parainfluenza Virus PIV5-L for Efficient Gene Delivery of B-Lymphoma Cells. Journal of Virology, 2022, , e0025722.	1.5	4
48	High prevalence and correlates of human herpesvirusâ€6A in nevocytic nevus and seborrheic diseases: Implication from a pilot study of skin patient tissues in Shanghai. Journal of Medical Virology, 2018, 90, 1532-1540.	2.5	3
49	Viral-Mediated mRNA Degradation for Pathogenesis. Biomedicines, 2018, 6, 111.	1.4	2
50	Proteomic Profiling Identifies Kaposi's Sarcoma-Associated Herpesvirus (KSHV)-Encoded LANA SIM -Associated Proteins in Hypoxia. MSystems, 2021, , e0110921.	1.7	2
51	Overview of Infectious Causes of Human Cancers. Advances in Experimental Medicine and Biology, 2017, 1018, 1-9.	0.8	1
52	Rapid establishment of murine gastrointestinal organoids using mechanical isolation method. Biochemical and Biophysical Research Communications, 2022, 608, 30-38.	1.0	1
53	Establishment of Novel Monoclonal Fabs Specific for Epstein-Barr Virus Encoded Latent Membrane Protein 1. Virologica Sinica, 2019, 34, 467-470.	1.2	0
54	Interplay Between Microenvironmental Abnormalities and Infectious Agents in Tumorigenesis. Advances in Experimental Medicine and Biology, 2017, 1018, 253-271.	0.8	0