Makoto Ujike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5815481/publications.pdf

Version: 2024-02-01

623734 477307 1,248 30 14 29 citations g-index h-index papers 33 33 33 2646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reduction of Cell Fusion by Deletion in the Hypervariable Region of the Spike Protein of Mouse Hepatitis Virus. Viruses, 2022, 14, 398.	3.3	1
2	Characterization of Localization and Export Signals of Bovine Torovirus Nucleocapsid Protein Responsible for Extensive Nuclear and Nucleolar Accumulation and Their Importance for Virus Growth. Journal of Virology, 2021, 95, .	3.4	3
3	Recent Progress in Torovirus Molecular Biology. Viruses, 2021, 13, 435.	3.3	5
4	Reverse Genetics with a Full-length Infectious cDNA Clone of Bovine Torovirus. Journal of Virology, 2021, , JVI0156121.	3.4	4
5	The Inhaled Steroid Ciclesonide Blocks SARS-CoV-2 RNA Replication by Targeting the Viral Replication-Transcription Complex in Cultured Cells. Journal of Virology, 2020, 95, .	3.4	178
6	A novel defective recombinant porcine enterovirus G virus carrying a porcine torovirus papain-like cysteine protease gene and a putative anti-apoptosis gene in place of viral structural protein genes. Infection, Genetics and Evolution, 2019, 75, 103975.	2.3	14
7	Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines. Journal of Veterinary Medical Science, 2017, 79, 1155-1162.	0.9	8
8	Phylogenetic and antigenic characterization of newly isolated porcine epidemic diarrhea viruses in Japan. Virus Research, 2016, 222, 113-119.	2.2	12
9	The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles. Journal of General Virology, 2016, 97, 1853-1864.	2.9	58
10	Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions. Viruses, 2015, 7, 1700-1725.	3.3	123
11	Identification of CCL2, RARRES2 and EFNB2 as host cell factors that influence the multistep replication of respiratory syncytial virus. Virus Research, 2015, 210, 213-226.	2.2	7
12	Host Adaptation and the Alteration of Viral Properties of the First Influenza A/H1N1pdm09 Virus Isolated in Japan. PLoS ONE, 2015, 10, e0130208.	2.5	13
13	Hemagglutination mediated by the spike protein of cell-adapted bovine torovirus. Archives of Virology, 2013, 158, 1561-1566.	2.1	6
14	Two palmitylated cysteine residues of the severe acute respiratory syndrome coronavirus spike (S) protein are critical for S incorporation into virus-like particles, but not for M–S co-localization. Journal of General Virology, 2012, 93, 823-828.	2.9	15
15	Increased replication of respiratory syncytial virus in the presence of cytokeratin 8 and 18. Journal of Medical Virology, 2012, 84, 365-370.	5.0	4
16	Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity. Virus Research, 2011, 161, 188-193.	2.2	24
17	Rapid discrimination of oseltamivirâ€resistant 275Y and â€susceptible 275H substitutions in the neuraminidase gene of pandemic influenza A/H1N1 2009 virus by duplex oneâ€step RTâ€PCR assay. Journal of Medical Virology, 2011, 83, 1121-1127.	5.0	18
18	Mumefural and related HMF derivatives from Japanese apricot fruit juice concentrate show multiple inhibitory effects on pandemic influenza A (H1N1) virus. Food Chemistry, 2011, 127, 1-9.	8.2	38

#	Article	IF	CITATIONS
19	Monitoring and Characterization of Oseltamivir-Resistant Pandemic (H1N1) 2009 Virus, Japan, 2009–2010. Emerging Infectious Diseases, 2011, 17, 470-479.	4.3	30
20	Role of Proteases in the Release of Porcine Epidemic Diarrhea Virus from Infected Cells. Journal of Virology, 2011, 85, 7872-7880.	3.4	73
21	Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan. Emerging Infectious Diseases, 2010, 16, 926-935.	4.3	40
22	A two-year survey of the oseltamivir-resistant influenza A(H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir and zanamivir. Virology Journal, 2010, 7, 53.	3.4	59
23	Molecular Evolutionary Analysis of the Influenza A(H1N1)pdm, May–September, 2009: Temporal and Spatial Spreading Profile of the Viruses in Japan. PLoS ONE, 2010, 5, e11057.	2.5	36
24	Isolation of oseltamivir-resistant influenza A/H1N1 virus of different origins in Yokohama City, Japan, during the 2007-2008 influenza season. Japanese Journal of Infectious Diseases, 2009, 62, 83-6.	1.2	9
25	Heptad Repeat-Derived Peptides Block Protease-Mediated Direct Entry from the Cell Surface of Severe Acute Respiratory Syndrome Coronavirus but Not Entry via the Endosomal Pathway. Journal of Virology, 2008, 82, 588-592.	3.4	42
26	A point mutation at the C terminus of the cytoplasmic domain of influenza B virus haemagglutinin inhibits syncytium formation. Journal of General Virology, 2006, 87, 1669-1676.	2.9	4
27	Enhancement of SARS-CoV Infection by Proteases. Advances in Experimental Medicine and Biology, 2006, 581, 253-258.	1.6	1
28	Influence of Additional Acylation Site(s) of Influenza B Virus Hemagglutinin on Syncytium Formation. Microbiology and Immunology, 2005, 49, 355-359.	1.4	7
29	Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12543-12547.	7.1	286
30	Influence of Acylation Sites of Influenza B Virus Hemagglutinin on Fusion Pore Formation and Dilation. Journal of Virology, 2004, 78, 11536-11543.	3.4	28