
Junfeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of regional emission controls on the chemical composition, sources, and size distributions of submicron aerosols: Insights from the 2014 Nanjing Youth Olympic Games. Science of the Total Environment, 2022, 807, 150869.	3.9	10
2	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	3.9	3
3	High-spatial-resolution distributions of aerosol chemical characteristics in urban Lanzhou, western China, during wintertime: Insights from an on-road mobile aerosol mass spectrometry measurement experiment. Science of the Total Environment, 2022, 819, 153069.	3.9	3
4	Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning. ACS Earth and Space Chemistry, 2022, 6, 1059-1066.	1.2	8
5	Prediction of water quality based on SVR by fluorescence excitation-emission matrix and UV–Vis absorption spectrum. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 273, 121059.	2.0	11
6	Secondary organic aerosol formation from photooxidation of C3H6 under the presence of NH3: Effects of seed particles. Environmental Research, 2022, 211, 113064.	3.7	5
7	Partitioning of Organonitrates in the Production of Secondary Organic Aerosols from α-Pinene Photo-Oxidation. Environmental Science & Technology, 2022, 56, 5421-5429.	4.6	4
8	Seasonal variations and potential sources of biomass burning tracers in particulate matter in Nanjing aerosols during 2017–2018. Chemosphere, 2022, 303, 135015.	4.2	5
9	Characteristics, formation, and sources of PM2.5 in 2020 in Suzhou, Yangtze River Delta, China. Environmental Research, 2022, 212, 113545.	3.7	6
10	Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 2022, 22, 8073-8096.	1.9	7
11	Disentangling drivers of air pollutant and health risk changes during the COVID-19 lockdown in China. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	6
12	Changes of air quality and its associated health and economic burden in 31 provincial capital cities in China during COVID-19 pandemic. Atmospheric Research, 2021, 249, 105328.	1.8	60
13	Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
14	Gain-type optomechanically induced absorption and precise mass sensor in a hybrid optomechanical system. Journal of Applied Physics, 2021, 129, 084504.	1.1	4
15	Elemental analysis of oxygenated organic coating on black carbon particles using a soot-particle aerosol mass spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2799-2812.	1.2	5
16	Enhancement of Upper Second-Order Sidebands Based on Optomechanically Induced Absorption in a Double-Cavity Optomechanical System. IEEE Photonics Journal, 2021, 13, 1-11.	1.0	1
17	Fluorescence Aerosol Flow Tube Spectroscopy to Detect Liquid–Liquid Phase Separation. ACS Earth and Space Chemistry, 2021, 5, 1223-1232.	1.2	18
18	Comparison of air pollutants and their health effects in two developed regions in China during the COVID-19 pandemic. Journal of Environmental Management, 2021, 287, 112296.	3.8	15

JUNFENG WANG

#	Article	IF	CITATIONS
19	Humidity Dependence of the Condensational Growth of α-Pinene Secondary Organic Aerosol Particles. Environmental Science & Technology, 2021, 55, 14360-14369.	4.6	15
20	A preliminary study on wind tunnel simulations of the explosive growth and dissipation of fine particulate matter in ambient air. Atmospheric Research, 2020, 235, 104635.	1.8	4
21	Evolution of Aerosol Under Moist and Fog Conditions in a Rural Forest Environment: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Geophysical Research Letters, 2020, 47, e2020GL089714.	1.5	7
22	Molecular characterization of biomass burning tracer compounds in fine particles in Nanjing, China. Atmospheric Environment, 2020, 240, 117837.	1.9	7
23	Optical fiber temperature sensor with insensitive refractive index and strain based on phase demodulation. Microwave and Optical Technology Letters, 2020, 62, 3733-3738.	0.9	7
24	Estimation of aerosol liquid water from optical scattering instruments using ambient and dried sample streams. Atmospheric Environment, 2020, 239, 117787.	1.9	5
25	Aerosol Measurements by Soot Particle Aerosol Mass Spectrometer: a Review. Current Pollution Reports, 2020, 6, 440-451.	3.1	12
26	Synergistic Uptake by Acidic Sulfate Particles of Gaseous Mixtures of Glyoxal and Pinanediol. Environmental Science & Technology, 2020, 54, 11762-11770.	4.6	5
27	Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmospheric Research, 2020, 244, 105028.	1.8	42
28	Chemical characteristics, sources and evolution processes of fine particles in Lin'an, Yangtze River Delta, China. Chemosphere, 2020, 254, 126851.	4.2	11
29	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	5.8	161
30	Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere, 2020, 11, 202.	1.0	13
31	Characteristics and potential sources of black carbon particles in suburban Nanjing, China. Atmospheric Pollution Research, 2020, 11, 981-991.	1.8	18
32	Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS. Atmospheric Chemistry and Physics, 2020, 20, 14091-14102.	1.9	19
33	Evolution in physiochemical and cloud condensation nuclei activation properties of crop residue burning particles during photochemical aging. Journal of Environmental Sciences, 2019, 77, 43-53.	3.2	2
34	Investigation of formation mechanism of particulate matter in a laboratory-scale simulated cement kiln co-processing municipal sewage sludge. Journal of Cleaner Production, 2019, 234, 822-831.	4.6	15
35	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	1.2	56
36	Characterization of Size-Resolved Hygroscopicity of Black Carbon-Containing Particle in Urban Environment. Environmental Science & Technology, 2019, 53, 14212-14221.	4.6	27

JUNFENG WANG

#	Article	IF	CITATIONS
37	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	1.9	45
38	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	1.9	84
39	Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 165-179.	1.9	73
40	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	1.9	49
41	Contrasting physical properties of black carbon in urban Beijing between winter and summer. Atmospheric Chemistry and Physics, 2019, 19, 6749-6769.	1.9	89
42	Impacts of relative humidity on fine aerosol properties via environmental wind tunnel experiments. Atmospheric Environment, 2019, 206, 21-29.	1.9	6
43	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	1.2	155
44	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	1.2	28
45	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	1.9	42
46	Responses of secondary aerosols to relative humidity and photochemical activities in an industrialized environment during late winter. Atmospheric Environment, 2018, 193, 66-78.	1.9	49
47	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	1.9	57
48	Characteristics and sources of ambient refractory black carbon aerosols: Insights from soot particle aerosol mass spectrometer. Atmospheric Environment, 2018, 185, 147-152.	1.9	16
49	Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmospheric Environment, 2018, 187, 230-240.	1.9	80
50	Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environmental Pollution, 2017, 225, 74-85.	3.7	82
51	Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 21386-21397.	2.7	28
52	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017, 51, 14072-14082.	4.6	55
53	Summertime Day-Night Differences of PM2.5 Components (Inorganic Ions, OC, EC, WSOC, WSON, HULIS,) Tj I	ETQq1_1 0.7	784314 rgBT 31
54	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere, 2017, 8, 62.	1.0	52

4

JUNFENG WANG

#	Article	IF	CITATIONS
55	By-products recycling for syngas cleanup in biomass pyrolysis – An overview. Renewable and Sustainable Energy Reviews, 2016, 59, 1246-1268.	8.2	109
56	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	1.9	96
57	Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environmental Toxicology and Pharmacology, 2016, 45, 179-186.	2.0	59
58	Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel, 2016, 182, 871-878.	3.4	47
59	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	3.9	67
60	Waste-to-energy: Dehalogenation of plastic-containing wastes. Waste Management, 2016, 49, 287-303.	3.7	86
61	Thermodynamic modeling of electrolyte solutions by a hybrid ion-interaction and solvation (HIS) model. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48, 79-88.	0.7	5
62	Crystal structure of N-propynoyl-(5R)-3-methyl- 5-phenylmorpholin-2-one, C14H13NO3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, .	0.1	0