Brett M Kroncke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5. International Journal of Molecular Sciences, 2022, 23, 2225.	1.8	2
2	Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation, 2022, 145, 877-891.	1.6	18
3	A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2. American Journal of Human Genetics, 2022, 109, 1208-1216.	2.6	15
4	Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare <i>KCNH2</i> Variants. Circulation Genomic and Precision Medicine, 2021, 14, e003289.	1.6	10
5	High-Throughput Reclassification of SCN5A Variants. American Journal of Human Genetics, 2020, 107, 111-123.	2.6	88
6	A Bayesian method to estimate variant-induced disease penetrance. PLoS Genetics, 2020, 16, e1008862.	1.5	11
7	High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm, 2020, 17, 2180-2189.	0.3	42
8	Deep Mutational Scan of an <i>SCN5A</i> Voltage Sensor. Circulation Genomic and Precision Medicine, 2020, 13, e002786.	1.6	33
9	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
10	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
11	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
12	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
13	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
14	A Bayesian method to estimate variant-induced disease penetrance. , 2020, 16, e1008862.		0
15	Association of Thyroid Function Genetic Predictors With Atrial Fibrillation. JAMA Cardiology, 2019, 4, 136.	3.0	23
16	SCN5A variant R222Q generated abnormal changes in cardiac sodium current and action potentials in murine myocytes and Purkinje cells. Heart Rhythm, 2019, 16, 1676-1685.	0.3	15
17	Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm, 2019, 16, 1686-1695.	0.3	32
18	Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1. Computational and Structural Biotechnology Journal, 2019, 17, 206-214.	1.9	19

BRETT M KRONCKE

#	Article	IF	CITATIONS
19	Multiple mechanisms underlie increased cardiac late sodium current. Heart Rhythm, 2019, 16, 1091-1097.	0.3	8
20	Exploiting ion channel structure to assess rare variant pathogenicity. Heart Rhythm, 2018, 15, 890-894.	0.3	4
21	A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure, 2018, 26, 683-694.e3.	1.6	43
22	<i>SCN5A</i> (Na _V 1.5) Variant Functional Perturbation and Clinical Presentation. Circulation Genomic and Precision Medicine, 2018, 11, e002095.	1.6	36
23	Arrhythmia genetics: Not dark and lite, but 50 shades of gray. Heart Rhythm, 2018, 15, 1231-1232.	0.3	2
24	Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains. Science Advances, 2017, 3, e1602794.	4.7	38
25	Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	40
26	Structural basis for KCNE3 modulation of potassium recycling in epithelia. Science Advances, 2016, 2, e1501228.	4.7	45
27	Documentation of an Imperative To Improve Methods for Predicting Membrane Protein Stability. Biochemistry, 2016, 55, 5002-5009.	1.2	46
28	Structural Basis for KCNQ1 Long-QT Syndrome Disease causing Mutations. Biophysical Journal, 2016, 110, 230a.	0.2	0
29	Solution NMR Structure Determination of Polytopic α-Helical Membrane Proteins. Methods in Enzymology, 2015, 557, 329-348.	0.4	4
30	Personalized Biochemistry and Biophysics. Biochemistry, 2015, 54, 2551-2559.	1.2	31
31	Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 6402-6412.	1.2	26
32	Structural Investigation of the Transmembrane Domain of KCNE1 in Proteoliposomes. Biochemistry, 2014, 53, 6392-6401.	1.2	42
33	Structure of the Neisserial Outer Membrane Protein Opa ₆₀ :ÂLoop Flexibility Essential to Receptor Recognition and Bacterial Engulfment. Journal of the American Chemical Society, 2014, 136, 9938-9946.	6.6	52
34	Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements. Biophysical Journal, 2014, 107, 1697-1702.	0.2	6
35	Interaction Between KCNQ1 Gain-of-Function Residues. Biophysical Journal, 2014, 106, 141a.	0.2	2
36	Backbone 1H, 13C and 15N resonance assignments of the α-helical membrane protein TM0026 from Thermotoga maritima. Biomolecular NMR Assignments, 2013, 7, 203-206.	0.4	2

#	Article	IF	CITATIONS
37	MAPK Phosphorylation of Connexin 43 Promotes Binding of Cyclin E and Smooth Muscle Cell Proliferation. Circulation Research, 2012, 111, 201-211.	2.0	89
38	ldentification and removal of nitroxide spin label contaminant: Impact on PRE studies of αâ€helical membrane proteins in detergent. Protein Science, 2012, 21, 589-595.	3.1	6
39	Nitroxide Spin Label Side Chain Dynamics of Solvent Exposed Sites on Membrane Proteins. Biophysical Journal, 2011, 100, 143a-144a.	0.2	Ο