
Diane M Debinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Survey and Overview of Habitat Fragmentation Experiments. Conservation Biology, 2000, 14, 342-355.	2.4	1,100
2	Lifeâ€history traits predict species responses to habitat area and isolation: a cross ontinental synthesis. Ecology Letters, 2010, 13, 969-979.	3.0	336
3	Beyond Species Richness: Community Similarity as a Measure of Cross-Taxon Congruence for Coarse-Filter Conservation. Conservation Biology, 2004, 18, 167-173.	2.4	234
4	Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. Journal of Animal Ecology, 2001, 70, 840-852.	1.3	212
5	Conservation Value of Roadside Prairie Restoration to Butterfly Communities. Conservation Biology, 2001, 15, 401-411.	2.4	167
6	Assessing alternative futures for agriculture in Iowa, U.S.A Landscape Ecology, 2004, 19, 357-374.	1.9	92
7	Species diversity and the scale of the landscape mosaic: do scales of movement and patch size affect diversity?. Biological Conservation, 2001, 98, 179-190.	1.9	91
8	Butterfly responses to prairie restoration through fire and grazing. Biological Conservation, 2007, 140, 78-90.	1.9	91
9	Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landscape Ecology, 2007, 22, 1341-1354.	1.9	77
10	Untangling the effects of fire, grazing, and land-use legacies on grassland butterfly communities. Biodiversity and Conservation, 2012, 21, 2719-2746.	1.2	76
11	Evaluation of isolated and integrated prairie reconstructions as habitat for prairie butterflies. Biological Conservation, 2005, 126, 51-61.	1.9	73
12	Title is missing!. Landscape Ecology, 2001, 16, 71-83.	1.9	69
13	Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. Journal of Insect Conservation, 2010, 14, 663-677.	0.8	68
14	Using Biodiversity Data to Assess Species-Habitat Relationships in Glacier National Park, Montana. , 1994, 4, 833-843.		67
15	Spatial heterogeneity across five rangelands managed with pyricâ€herbivory. Journal of Applied Ecology, 2012, 49, 903-910.	1.9	65
16	Effects of fire and grazing on grasshopper sparrow nest survival. Journal of Wildlife Management, 2012, 76, 19-27.	0.7	59
17	Survival, movement, and resource use of the butterfly Parnassius clodius. Ecological Entomology, 2004, 29, 139-149.	1.1	57
18	Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. Journal of Animal Ecology, 2008, 77, 746-756.	1.3	56

#	Article	IF	CITATIONS
19	Forest fragmentation and matrix effects: the matrix does matter. Journal of Biogeography, 2006, 33, 1791-1792.	1.4	55
20	A cross-taxonomic comparison of insect responses to grassland management and land-use legacies. Ecosphere, 2011, 2, art131.	1.0	55
21	Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii. Biological Conservation, 1994, 70, 25-31.	1.9	48
22	Butterfly, bee and forb community composition and cross-taxon incongruence in tallgrass prairie fragments. Journal of Insect Conservation, 2008, 12, 69-79.	0.8	48
23	Montane meadow change during drought varies with background hydrologic regime and plant functional group. Ecology, 2010, 91, 1672-1681.	1.5	45
24	Nature reserves as catalysts for landscape change. Frontiers in Ecology and the Environment, 2012, 10, 144-152.	1.9	45
25	Predator identity influences the effect of habitat management on nest predation. Ecological Applications, 2015, 25, 1596-1605.	1.8	43
26	Another tool in the toolbox? Using fire and grazing to promote bird diversity in highly fragmented landscapes. Ecosphere, 2011, 2, art28.	1.0	42
27	Effects of grassland management practices on ant functional groups in central North America. Journal of Insect Conservation, 2013, 17, 699-713.	0.8	42
28	Title is missing!. Wetlands Ecology and Management, 1997, 5, 265-273.	0.7	40
29	Montane Meadows as Indicators of Environmental Change. Environmental Monitoring and Assessment, 2000, 64, 213-225.	1.3	38
30	Factors affecting butterfly use of filter strips in Midwestern USA. Agriculture, Ecosystems and Environment, 2005, 109, 40-47.	2.5	37
31	An Invasive Grass Increases Live Fuel Proportion and Reduces Fire Spread in a Simulated Grassland. Ecosystems, 2013, 16, 158-169.	1.6	36
32	Milkweed Matters: Monarch Butterfly (Lepidoptera: Nymphalidae) Survival and Development on Nine Midwestern Milkweed Species. Environmental Entomology, 2017, 46, 1098-1105.	0.7	33
33	Constraints to restoring fire and grazing ecological processes to optimize grassland vegetation structural diversity. Ecological Engineering, 2016, 95, 865-875.	1.6	32
34	Landowners' perceptions of risk in grassland management: woody plant encroachment and prescribed fire. Ecology and Society, 2014, 19, .	1.0	31
35	Quantifying Relationships Between Bird And Butterfly Community Shifts And Environmental Change. , 2006, 16, 380-393.		30
36	Temporal variability in aboveground plant biomass decreases as spatial variability increases. Ecology, 2016, 97, 555-560.	1.5	30

#	Article	IF	CITATIONS
37	High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography, 2017, 26, 459-471.	2.7	30
38	Inconsistent outcomes of heterogeneity-based management underscore importance of matching evaluation to conservation objectives. Environmental Science and Policy, 2013, 31, 53-60.	2.4	29
39	Moving forward in global hange ecology: capitalizing on natural variability. Ecology and Evolution, 2013, 3, 170-181.	0.8	29
40	Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	29
41	Postfledging Survival of Grasshopper Sparrows in Grasslands Managed with Fire and Grazing. Condor, 2011, 113, 429-437.	0.7	28
42	Adapting the Fire-Grazing Interaction to Small Pastures in a Fragmented Landscape for Grassland Bird Conservation. Rangeland Ecology and Management, 2016, 69, 300-309.	1.1	25
43	Grazing and an invasive grass confound spatial pattern of exotic and native grassland plant species richness. Basic and Applied Ecology, 2012, 13, 654-662.	1.2	24
44	Monarch butterflies do not place all of their eggs in one basket: oviposition on nine Midwestern milkweed species. Ecosphere, 2018, 9, e02064.	1.0	21
45	Butterflies and Continuous Conservation Reserve Program Filter Strips: Landscape Considerations. Wildlife Society Bulletin, 2006, 34, 936-943.	1.6	20
46	Temporal variability in aboveground plant biomass decreases as spatial variability increases. Ecology, 2016, 97, 555-60.	1.5	20
47	Multitemporal characterization and mapping of montane sagebrush communities using Indian IRS LISSâ€I imagery. Geocarto International, 1998, 13, 65-74.	1.7	18
48	Multivariate Analysis of Rangeland Vegetation and Soil Organic Carbon Describes Degradation, Informs Restoration and Conservation. Land, 2013, 2, 328-350.	1.2	18
49	Monarch Butterflies Show Differential Utilization of Nine Midwestern Milkweed Species. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	17
50	Effects of Larval Food-limitation on Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae). American Midland Naturalist, 1999, 141, 315-322.	0.2	15
51	Bee Abundance and Nutritional Status in Relation to Grassland Management Practices in an Agricultural Landscape. Environmental Entomology, 2016, 45, 338-347.	0.7	15
52	Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change. Frontiers in Plant Science, 2017, 8, 730.	1.7	15
53	Contrasting impacts of invasive plants and human-altered landscape context on nest survival and brood parasitism of a grassland bird. Landscape Ecology, 2018, 33, 1799-1813.	1.9	15
54	Gradient-based habitat affinities predict species vulnerability to drought. Ecology, 2013, 94, 1036-1045.	1.5	13

#	Article	IF	CITATIONS
55	Fire induced reproductive mechanisms of a Symphoricarpos (Caprifoliaceae) shrub after dormant season burning. , 2014, 55, 80.		13
56	Restoring the fire–grazing interaction promotes tree–grass coexistence by controlling woody encroachment. Ecosphere, 2020, 11, e02993.	1.0	13
57	Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants. Journal of Chemical Ecology, 2012, 38, 525-537.	0.9	12
58	Drought Influences Control of Parasitic Flies of Cattle on Pastures Managed with Patch-Burn Grazing. Rangeland Ecology and Management, 2015, 68, 290-297.	1.1	12
59	Effects of Tall Fescue and Its Fungal Endophyte on the Development and Survival of Tawny-Edged Skippers (Lepidoptera: Hesperiidae). Environmental Entomology, 2016, 45, 142-149.	0.7	11
60	Performance of Early Instar Monarch Butterflies (Danaus plexippusL.) on Nine Milkweed Species Native to Iowa. Journal of the Lepidopterists' Society, 2017, 71, 153-161.	0.0	11
61	Evaluating the Utility of Species Distribution Models in Informing Climate Change-Resilient Grassland Restoration Strategy. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	11
62	Exotic-Dominated Grasslands Show Signs of Recovery with Cattle Grazing and Fire. PLoS ONE, 2016, 11, e0165758.	1.1	11
63	Response of songbirds to riparian willow habitat structure in the Greater Yellowstone Ecosystem. Wilson Journal of Ornithology, 2008, 120, 830-839.	0.1	10
64	An Unexpected Journey: Greater Prairie-chicken Travels Nearly 4000 km after Translocation to Iowa. American Midland Naturalist, 2015, 174, 343-349.	0.2	10
65	The emergence of heterogeneity in invasive-dominated grassland: a matter of the scale of detection. Landscape Ecology, 2018, 33, 2103-2119.	1.9	9
66	A Comparison of the Arthropod Communities in Remnant, Restored, and Reconstructed Iowa Tallgrass Prairies. Natural Areas Journal, 2011, 31, 148-155.	0.2	8
67	Evaluating Native Bee Communities and Nutrition in Managed Grasslands. Environmental Entomology, 2020, 49, 717-725.	0.7	8
68	Climate Extremes, Vegetation Change, and Decoupling of Interactive Fire-Grazing Processes Exacerbate Fly Parasitism of Cattle. Environmental Entomology, 2017, 46, 191-200.	0.7	5
69	Landâ€use history and an invasive grass affect tallgrass prairie sedge community composition. Applied Vegetation Science, 2015, 18, 209-219.	0.9	4
70	Using Adaptive Management to Restore Grasslands Invaded by Tall Fescue (Schedonorus) Tj ETQq0 0 0 rgBT /Ov	erlock 10 T 1,1	rf 50 142 Td
71	Warming temperatures affect meadowâ€wide nectar resources, with implications for plant–pollinator communities. Ecosphere, 2022, 13, .	1.0	3

72Occupancy modeling of Parnassius clodius butterfly populations in Grand Teton National Park,
Wyoming. Journal of Insect Conservation, 2018, 22, 267-276.0.82

#	Article	IF	CITATIONS
73	Moderate Grazer Density Stabilizes Forage Availability More Than Patch Burning in Low-Stature Grassland. Land, 2021, 10, 395.	1.2	2
74	Temporal variability in aboveground plant biomass decreases as spatial variability increases. Ecology, 2016, , .	1.5	2
75	Recoupling cross-scale interactions in tall fescue-invaded tallgrass prairie. Landscape Ecology, 0, , 1.	1.9	2
76	The Landscape of Paul Errington's Work. Wildlife Society Bulletin, 2006, 34, 1411-1416.	1.6	1
77	Wind Tunnel Studies of Temperature Dependence and Behavior of Butterflies in the Context of Habitat Edges. Journal of the Lepidopterists' Society, 2015, 69, 125-130.	0.0	0
78	Natural History Observations on Parnassius clodius altaurus and Parnassius smintheus magnus (Papilionidae) in Grand Teton National Park, Wy. Journal of the Lepidopterists' Society, 2021, 75, .	0.0	0