Zeng, Yikai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814625/publications.pdf

Version: 2024-02-01

31	2,468	218592 26 h-index	31
papers	citations		g-index
31	31	31	1725
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 2015, 300, 438-443.	4.0	251
2	Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Applied Energy, 2016, 180, 386-391.	5.1	166
3	A high-performance dual-scale porous electrode for vanadium redox flow batteries. Journal of Power Sources, 2016, 325, 329-336.	4.0	157
4	Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 2017, 339, 1-12.	4.0	154
5	A high-performance flow-field structured iron-chromium redox flow battery. Journal of Power Sources, 2016, 324, 738-744.	4.0	145
6	Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. Journal of Power Sources, 2017, 341, 318-326.	4.0	134
7	A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility. Applied Energy, 2015, 158, 157-166.	5.1	118
8	A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries. Applied Energy, 2019, 238, 435-441.	5.1	113
9	A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. Journal of Power Sources, 2016, 329, 247-254.	4.0	111
10	High-performance zinc bromine flow battery via improved design of electrolyte and electrode. Journal of Power Sources, 2017, 355, 62-68.	4.0	111
11	Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields. Journal of Power Sources, 2016, 327, 258-264.	4.0	93
12	Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries. Journal of Power Sources, 2016, 331, 452-461.	4.0	92
13	Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. Journal of Power Sources, 2016, 336, 115-125.	4.0	87
14	The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries. Applied Energy, 2016, 182, 204-209.	5.1	83
15	Modeling of ion transport through a porous separator in vanadium redox flow batteries. Journal of Power Sources, 2016, 327, 67-76.	4.0	80
16	Performance of a vanadium redox flow battery with a VANADion membrane. Applied Energy, 2016, 180, 353-359.	5.1	68
17	Unraveling the Positive Roles of Point Defects on Carbon Surfaces in Nonaqueous Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2016, 120, 18394-18402.	1.5	50
18	Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. Journal of Power Sources, 2016, 327, 374-383.	4.0	46

#	Article	IF	CITATIONS
19	A self-cleaning Li-S battery enabled by a bifunctional redox mediator. Journal of Power Sources, 2017, 361, 203-210.	4.0	46
20	A low-cost iron-cadmium redox flow battery for large-scale energy storage. Journal of Power Sources, 2016, 330, 55-60.	4.0	44
21	Titanium Carbide Nanoparticleâ€Decorated Electrode Enables Significant Enhancement in Performance of Allâ€Vanadium Redox Flow Batteries. Energy Technology, 2016, 4, 990-996.	1.8	42
22	A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries. Journal of Power Sources, 2017, 352, 77-82.	4.0	42
23	Numerical study on thermal stresses of a planar solid oxide fuel cell. International Journal of Thermal Sciences, 2014, 77, 1-10.	2.6	41
24	A novel tin-bromine redox flow battery for large-scale energy storage. Applied Energy, 2019, 255, 113756.	5.1	39
25	Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chemical Engineering Journal, 2021, 405, 126684.	6.6	39
26	A novel iron-lead redox flow battery for large-scale energy storage. Journal of Power Sources, 2017, 346, 97-102.	4.0	29
27	Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries. Journal of Power Sources, 2021, 506, 230238.	4.0	29
28	Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries. Journal of Energy Storage, 2020, 32, 101781.	3.9	23
29	Economic analysis of hydrogen-powered data center. International Journal of Hydrogen Energy, 2021, 46, 27841-27850.	3 . 8	16
30	Sensitivity Analysis for a Planar SOFC: Size Effects of the Porous Gas Diffusion Layer Underneath the Channel Rib. Fuel Cells, 2014, 14, 123-134.	1.5	13
31	A high efficiency electric heater based on dual-helical tube and screw-tape for instant water heating. Applied Thermal Engineering, 2019, 160, 114018.	3.0	6