
Lihong Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spirooxindoles: Promising scaffolds for anticancer agents. European Journal of Medicinal Chemistry, 2015, 97, 673-698.	2.6	653
2	Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. European Journal of Medicinal Chemistry, 2013, 62, 11-19.	2.6	222
3	Triazole–Dithiocarbamate Based Selective Lysine Specific Demethylase 1 (LSD1) Inactivators Inhibit Gastric Cancer Cell Growth, Invasion, and Migration. Journal of Medicinal Chemistry, 2013, 56, 8543-8560.	2.9	198
4	A Systematic Review of Histone Lysine‣pecific Demethylase 1 and Its Inhibitors. Medicinal Research Reviews, 2015, 35, 1032-1071.	5.0	157
5	Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: Success and challenges. European Journal of Medicinal Chemistry, 2015, 95, 35-40.	2.6	147
6	Design, Synthesis, and Structure–Activity Relationship of Novel LSD1 Inhibitors Based on Pyrimidine–Thiourea Hybrids As Potent, Orally Active Antitumor Agents. Journal of Medicinal Chemistry, 2015, 58, 1705-1716.	2.9	139
7	Targeting Brd4 for cancer therapy: inhibitors and degraders. MedChemComm, 2018, 9, 1779-1802.	3.5	109
8	Natural Product-Derived Spirooxindole Fragments Serve as Privileged Substructures for Discovery of New Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 1315-1324.	0.9	103
9	Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole–dithiocarbamate–urea hybrids. European Journal of Medicinal Chemistry, 2013, 64, 99-110.	2.6	96
10	Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. European Journal of Medicinal Chemistry, 2014, 86, 368-380.	2.6	93
11	Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids, 2012, 77, 710-715.	0.8	90
12	Design and synthesis of novel 1,2,3-triazole–pyrimidine–urea hybrids as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1124-1128.	1.0	82
13	Synthesis and biological evaluation of coumarin–1,2,3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors. MedChemComm, 2014, 5, 650-654.	3.5	79
14	TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics, 2016, 8, 651-666.	1.0	72
15	Efficient synthesis of new antiproliferative steroidal hybrids using the molecular hybridization approach. European Journal of Medicinal Chemistry, 2016, 117, 241-255.	2.6	68
16	Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharmaceutica Sinica B, 2019, 9, 794-808.	5.7	67
17	Discovery of [1,2,3]Triazolo[4,5- <i>d</i>]pyrimidine Derivatives as Novel LSD1 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 384-389.	1.3	66
18	Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidines as potent lysine specific demethylase 1 (LSD1/KDM1A) inhibitors. European Journal of Medicinal Chemistry, 2017, 125, 940-951.	2.6	65

#	Article	IF	CITATIONS
19	Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. European Journal of Medicinal Chemistry, 2016, 124, 967-980.	2.6	63
20	A novel [1,2,4] triazolo [1,5-a] pyrimidine-based phenyl-linked steroid dimer: Synthesis and its cytotoxic activity. European Journal of Medicinal Chemistry, 2013, 69, 323-330.	2.6	60
21	Development of Highly Potent, Selective, and Cellular Active Triazolo[1,5- <i>a</i>]pyrimidine-Based Inhibitors Targeting the DCN1–UBC12 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 2772-2797.	2.9	59
22	Tranylcypromine Based Lysine-Specific Demethylase 1 Inhibitor: Summary and Perspective. Journal of Medicinal Chemistry, 2020, 63, 14197-14215.	2.9	57
23	Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. European Journal of Medicinal Chemistry, 2017, 126, 246-258.	2.6	56
24	Design, synthesis and antiproliferative activity studies of novel dithiocarbamate–chalcone derivates. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3918-3922.	1.0	51
25	Synthesis and anticancer activities of novel 1,2,4-triazolo[3,4-a]phthalazine derivatives. European Journal of Medicinal Chemistry, 2014, 85, 235-244.	2.6	50
26	Reversible Lysine Specific Demethylase 1 (LSD1) Inhibitors: A Promising Wrench to Impair LSD1. Journal of Medicinal Chemistry, 2021, 64, 2466-2488.	2.9	48
27	Synthesis and in vitro antitumor activity of new butenolide-containing dithiocarbamates. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3074-3077.	1.0	47
28	Design, synthesis and biological evaluation of novel steroidal spiro-oxindoles as potent antiproliferative agents. Journal of Steroid Biochemistry and Molecular Biology, 2014, 141, 121-134.	1.2	47
29	Baicalin, a natural LSD1 inhibitor. Bioorganic Chemistry, 2016, 69, 129-131.	2.0	47
30	Synthesis, structure-activity relationship studies and biological characterization of new [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1/KDM1A inhibitors. European Journal of Medicinal Chemistry, 2019, 167, 388-401.	2.6	47
31	Design and synthesis of novel D-ring fused steroidal heterocycles. Steroids, 2013, 78, 1200-1208.	0.8	43
32	Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1,2,3-triazole-azole Derivates as Antiproliferative Agents. Molecules, 2016, 21, 653.	1.7	43
33	Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3Acells via MAPK/Wnt signaling pathways. European Journal of Medicinal Chemistry, 2017, 127, 87-99.	2.6	43
34	Design, synthesis and antiproliferative activity studies of 1,2,3-triazole–chalcones. MedChemComm, 2016, 7, 1664-1671.	3.5	42
35	Lysine demethylase 5B (KDM5B): A potential anti-cancer drug target. European Journal of Medicinal Chemistry, 2019, 161, 131-140.	2.6	41
36	Synthesis of novel D-ring fused 7′-aryl-androstano[17,16-d][1,2,4] triazolo[1,5-a]pyrimidines. Steroids, 2012. 77. 367-374.	0.8	38

#	Article	IF	CITATIONS
37	Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. European Journal of Medicinal Chemistry, 2019, 184, 111764.	2.6	37
38	Design and synthesis of isatin/triazole conjugates that induce apoptosis and inhibit migration of MGC-803 cells. European Journal of Medicinal Chemistry, 2016, 124, 350-360.	2.6	36
39	Discovery of 5,6-diaryl-1,2,4-triazines hybrids as potential apoptosis inducers. European Journal of Medicinal Chemistry, 2017, 138, 1076-1088.	2.6	35
40	Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. European Journal of Medicinal Chemistry, 2018, 145, 11-22.	2.6	34
41	Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. European Journal of Medicinal Chemistry, 2019, 166, 432-444.	2.6	34
42	Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. European Journal of Medicinal Chemistry, 2014, 80, 593-604.	2.6	32
43	Efficient synthesis of novel antiproliferative steroidal spirooxindoles via the [3+2] cycloaddition reactions of azomethine ylides. Steroids, 2015, 102, 92-100.	0.8	32
44	Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms. Scientific Reports, 2016, 6, 31607.	1.6	32
45	Identification of thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents through the drug repurposing strategy. European Journal of Medicinal Chemistry, 2017, 135, 204-212.	2.6	32
46	Efficient construction of novel D-ring modified steroidal dienamides and their cytotoxic activities. European Journal of Medicinal Chemistry, 2013, 66, 171-179.	2.6	31
47	Discovery of novel AHLs as potent antiproliferative agents. European Journal of Medicinal Chemistry, 2015, 93, 321-329.	2.6	31
48	LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1. Pharmacological Research, 2017, 122, 66-77.	3.1	31
49	Structure-Activity Relationship Studies of β-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. Scientific Reports, 2017, 7, 12788.	1.6	30
50	Synthesis and biological evaluation of novel Jiyuan Oridonin A-1,2,3-triazole-azole derivatives as antiproliferative agents. European Journal of Medicinal Chemistry, 2018, 157, 1249-1263.	2.6	29
51	Facile synthesis of novel D-ring modified steroidal dienamides via rearrangement of 2H-pyrans. Steroids, 2013, 78, 494-499.	0.8	28
52	Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. European Journal of Medicinal Chemistry, 2019, 181, 111520.	2.6	28
53	Discovery and synthesis of novel indole derivatives-containing 3-methylenedihydrofuran-2(3H)-one as irreversible LSD1 inhibitors. European Journal of Medicinal Chemistry, 2019, 175, 357-372.	2.6	28
54	Design, synthesis and inÂvitro biological evaluation of novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing a thiosemicarbazide moiety. European Journal of Medicinal Chemistry, 2018, 146, 147-156.	2.6	27

#	Article	IF	CITATIONS
55	Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 14895-14911.	2.9	27
56	Potent hydrazone derivatives targeting esophageal cancer cells. European Journal of Medicinal Chemistry, 2018, 148, 359-371.	2.6	26
57	Structure-Based Design, Synthesis, and Biological Evaluation of New Triazolo[1,5- <i>a</i>]Pyrimidine Derivatives as Highly Potent and Orally Active ABCB1 Modulators. Journal of Medicinal Chemistry, 2020, 63, 15979-15996.	2.9	25
58	The Antitumor Activity of the Novel Compound Jesridonin on Human Esophageal Carcinoma Cells. PLoS ONE, 2015, 10, e0130284.	1.1	24
59	A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Acta Pharmaceutica Sinica B, 2021, 11, 750-762.	5.7	23
60	Discovery of novel steroidal pyran–oxindole hybrids as cytotoxic agents. Steroids, 2014, 88, 44-52.	0.8	22
61	A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicology and Applied Pharmacology, 2016, 309, 77-86.	1.3	22
62	Multicomponent assembly of novel antiproliferative steroidal dihydropyridinyl spirooxindoles. Steroids, 2016, 109, 22-28.	0.8	21
63	Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I. Antioxidants and Redox Signaling, 2017, 27, 73-92.	2.5	21
64	Discovery of [1,2,4]triazolo[1,5-a]pyrimidine derivatives as new bromodomain-containing protein 4 (BRD4) inhibitors. Chinese Chemical Letters, 2020, 31, 418-422.	4.8	21
65	Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. European Journal of Medicinal Chemistry, 2019, 162, 555-567.	2.6	20
66	BrÃ,nsted acid-promoted â€~on–water' C(sp3)-H functionalization for the synthesis of isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine derivatives targeting the SKP2-CKS1 interaction. Chinese Chemical Letters, 2020, 31, 349-352.	4.8	20
67	BrÃ,nsted Acid atalyzed Direct C(<i>sp</i> ²)â^'H Heteroarylation Enabling the Synthesis of Structurally Diverse Biaryl Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 59-66.	2.1	19
68	Palladium-Catalyzed Ligand-Free Double Cyclization Reactions for the Synthesis of 3-(1′-Indolyl)-phthalides. Organic Letters, 2020, 22, 814-817.	2.4	19
69	Design, synthesis and antibacterial evaluation of novel AHL analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4154-4156.	1.0	18
70	2,4-Disubstituted quinazolines targeting breast cancer cells via EGFR-PI3K. European Journal of Medicinal Chemistry, 2019, 172, 36-47.	2.6	18
71	An Overview on Screening Methods for Lysine Specific Demethylase 1 (LSD1) Inhibitors. Current Medicinal Chemistry, 2017, 24, 2496-2504.	1.2	18
72	Stereoselective synthesis of novel antiproliferative steroidal (E, E) dienamides through a cascade aldol/cyclization process. Steroids, 2013, 78, 1134-1140.	0.8	17

#	Article	IF	CITATIONS
73	Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR). Bioorganic and Medicinal Chemistry, 2018, 26, 5006-5017.	1.4	17
74	Cu(OTf) ₂ -Catalyzed Intramolecular Radical Cascade Reactions for the Diversity-Oriented Synthesis of Quinoline-Annulated Polyheterocyclic Frameworks. Organic Letters, 2021, 23, 1445-1450.	2.4	17
75	Investigating the binding mechanism of (4-Cyanophenyl)glycine derivatives as reversible LSD1 by 3D-QSAR, molecular docking and molecular dynamics simulations. Journal of Molecular Structure, 2019, 1175, 698-707.	1.8	15
76	HFIP-promoted catalyst-free cascade reactions for the synthesis of biologically relevant 3,3-di(indolyl)indolin-2-ones from indoles and isatins. Chinese Chemical Letters, 2020, 31, 2465-2468.	4.8	15
77	Efficient three-component one-pot synthesis of steroidal polysubstituted anilines. Steroids, 2015, 104, 1-7.	0.8	14
78	Discovery of new [1,2,4] Triazolo[1,5-a]Pyrimidine derivatives that Kill gastric cancer cells via the mitochondria pathway. European Journal of Medicinal Chemistry, 2020, 203, 112630.	2.6	14
79	Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2021, 211, 113108.	2.6	14
80	Solvent-free synthesis of novel steroidal 2-aminopyridines. Steroids, 2016, 115, 147-153.	0.8	12
81	Gramine-based structure optimization to enhance anti-gastric cancer activity. Bioorganic Chemistry, 2021, 107, 104549.	2.0	11
82	Synthesis of Novel Antiproliferative 1,2,3-triazole Hybrids Using the Molecular Hybridisation Approach. Journal of Chemical Research, 2016, 40, 674-677.	0.6	10
83	Molecular diversity of phenothiazines: design and synthesis of phenothiazine–dithiocarbamate hybrids as potential cell cycle blockers. Molecular Diversity, 2017, 21, 933-942.	2.1	10
84	Design, synthesis and preliminary biological evaluation of 5,8-dihydropteridine-6,7-diones that induce apoptosis and suppress cell migration. European Journal of Medicinal Chemistry, 2018, 143, 1959-1967.	2.6	10
85	Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment. Bioorganic and Medicinal Chemistry, 2021, 45, 116331.	1.4	10
86	Design, synthesis and preliminary antiproliferative activity studies of new diheteroaryl thioether derivatives. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4377-4382.	1.0	9
87	Design, synthesis and antiproliferative activity of thiazolo[5,4-d]pyrimidine derivatives through the atom replacement strategy. European Journal of Medicinal Chemistry, 2017, 138, 1034-1041.	2.6	9
88	Synthesis and preliminary antiproliferative activity of new pteridin-7(8H)-one derivatives. European Journal of Medicinal Chemistry, 2018, 143, 1396-1405.	2.6	9
89	Design, synthesis and biological evaluation of new steroidal Î ² -triazoly enones as potent antiproliferative agents. Steroids, 2019, 150, 108431.	0.8	9
90	Discovery of tofacitinib derivatives as orally active antitumor agents based on the scaffold hybridization strategy. European Journal of Medicinal Chemistry, 2020, 203, 112601.	2.6	9

#	Article	IF	CITATIONS
91	Discovery of novel tertiary amide derivatives as NEDDylation pathway activators to inhibit the tumor progression inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2020, 192, 112153.	2.6	9
92	Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. European Journal of Medicinal Chemistry, 2019, 161, 493-505.	2.6	8
93	Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing hydrazone fragment as potent and selective anticancer agents. Bioorganic Chemistry, 2020, 105, 104424.	2.0	8
94	Design, synthesis, and biological evaluation of new thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents. MedChemComm, 2017, 8, 1655-1658.	3.5	7
95	Discovery of 6-chloro-2-(propylthio)-8,9-dihydro-7H-purines containing a carboxamide moiety as potential selective anti-lung cancer agents. European Journal of Medicinal Chemistry, 2018, 151, 327-338.	2.6	7
96	Synthesis and inÂvitro biological evaluation of novel derivatives of Flexicaulin A condensation with amino acid trifluoroacetate. European Journal of Medicinal Chemistry, 2019, 182, 111645.	2.6	7
97	Pharmacoepigenetics of LSD1 Inhibitors in Cancer. , 2019, , 523-530.		7
98	Discovery of the theobromine derivative MQS-14 that induces death of MGC-803 cells mainly through ROS-mediated mechanisms. European Journal of Medicinal Chemistry, 2019, 174, 76-86.	2.6	7
99	Screening and pharmacodynamic evaluation of the antirespiratory syncytial virus activity of steroidal pyridine compounds in vitro and in vivo. Journal of Medical Virology, 2021, 93, 3428-3438.	2.5	7
100	Synthesis and biological evaluation of 17-cyanopyridine derivatives of pregnenolone as potential anti-prostate cancer agents. Steroids, 2021, 171, 108841.	0.8	7
101	Synthesis and Antitumor Activity Evaluation of Pyrimidine Analogues Bearing Urea Moiety. Chinese Journal of Chemistry, 2014, 32, 443-447.	2.6	6
102	Synthesis and biological evaluation of novel C6-cyclo secondary amine substituted purine steroid-nucleosides analogues. Steroids, 2014, 85, 13-17.	0.8	5
103	Synthesis of biologically relevant steroidal spiro \hat{l}^2 -lactams from dienamides through the cascade 4-endo N-cyclization/aerobic oxidation sequence. Steroids, 2020, 159, 108635.	0.8	4
104	Design and synthesis of new indole containing biaryl derivatives as potent antiproliferative agents. Bioorganic Chemistry, 2021, 110, 104821.	2.0	4
105	The Development of New Spirooxindoles Targeting the p53–MDM2 Protein-Protein Interactions for Cancer Therapy. , 2018, , 213-237.		3