List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum. Plant Cell, 2006, 18, 2294-2313.	3.1	469
2	Highâ€value oils from plants. Plant Journal, 2008, 54, 640-655.	2.8	371
3	Biogenesis and functions of lipid droplets in plants. Journal of Lipid Research, 2012, 53, 215-226.	2.0	333
4	Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnology Journal, 2008, 6, 819-831.	4.1	292
5	Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant Journal, 2004, 37, 156-173.	2.8	182
6	Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Current Opinion in Plant Biology, 2007, 10, 236-244.	3.5	179
7	Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnology Journal, 2009, 7, 694-703.	4.1	171
8	Identification of a New Class of Lipid Droplet-Associated Proteins in Plants Â. Plant Physiology, 2013, 162, 1926-1936.	2.3	167
9	Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiology, 2002, 130, 2027-2038.	2.3	163
10	Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry, 2006, 67, 1166-1176.	1.4	138
11	Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. Plant Cell, 2015, 27, 2616-2636.	3.1	134
12	Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: Functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiology and Biochemistry, 2009, 47, 867-879.	2.8	128
13	Turning Over a New Leaf in Lipid Droplet Biology. Trends in Plant Science, 2017, 22, 596-609.	4.3	126
14	Disruption of the <i>Arabidopsis</i> CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17833-17838.	3.3	125
15	Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. Plant Physiology, 2016, 170, 2052-2071.	2.3	125
16	Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. Frontiers in Plant Science, 2019, 10, 184.	1.7	118
17	Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions. Journal of Biological Chemistry, 2013, 288, 36902-36914.	1.6	114
18	Commentary: Why don't plant leaves get fat?. Plant Science, 2013, 207, 128-134.	1.7	100

#	Article	IF	CITATIONS
19	Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids. Journal of Experimental Botany, 2016, 67, 4627-4638.	2.4	89
20	Novel Targeting Signals Mediate the Sorting of Different Isoforms of the Tail-Anchored Membrane Protein Cytochrome b5 to Either Endoplasmic Reticulum or Mitochondria. Plant Cell, 2004, 16, 3002-3019.	3.1	88
21	Metabolic engineering for enhanced oil in biomass. Progress in Lipid Research, 2019, 74, 103-129.	5.3	87
22	Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Letters, 2001, 494, 44-47.	1.3	83
23	The α/β Hydrolase CGI-58 and Peroxisomal Transport Protein PXA1 Coregulate Lipid Homeostasis and Signaling in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1726-1739.	3.1	77
24	Temperature-sensitive Post-translational Regulation of Plant Omega-3 Fatty-acid Desaturases Is Mediated by the Endoplasmic Reticulum-associated Degradation Pathway. Journal of Biological Chemistry, 2010, 285, 21781-21796.	1.6	72
25	Arabidopsis lipid dropletâ€associated protein (LDAP) – interacting protein (<scp>LDIP</scp>) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	2.8	71
26	Mechanisms of lipid droplet biogenesis. Biochemical Journal, 2019, 476, 1929-1942.	1.7	68
27	Lipid droplets in plants and algae: Distribution, formation, turnover and function. Seminars in Cell and Developmental Biology, 2020, 108, 82-93.	2.3	63
28	Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiologia Plantarum, 2007, 132, 071202185545001-???.	2.6	59
29	Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signaling and Behavior, 2013, 8, e27141.	1.2	55
30	The genome of jojoba (<i>Simmondsia chinensis</i>): A taxonomically isolated species that directs wax ester accumulation in its seeds. Science Advances, 2020, 6, eaay3240.	4.7	53
31	Chilling-Sensitive, Post-Transcriptional Regulation of a Plant Fatty Acid Desaturase Expressed in Yeast. Biochemical and Biophysical Research Communications, 2001, 282, 1019-1025.	1.0	48
32	Hydrophobicâ€Domainâ€Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains. Traffic, 2011, 12, 452-472.	1.3	47
33	Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Scientific Reports, 2016, 6, 22181.	1.6	46
34	Development and potential of genetically engineered oilseeds. Seed Science Research, 2005, 15, 255-267.	0.8	40
35	SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. Plant Cell, 2020, 32, 2932-2950.	3.1	39
36	Mouse fat storageâ€inducing transmembrane protein 2 (<scp>FIT</scp> 2) promotes lipid droplet accumulation in plants. Plant Biotechnology Journal, 2017, 15, 824-836.	4.1	37

#	Article	IF	CITATIONS
37	Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii). Plant Science, 2013, 203-204, 79-88.	1.7	31
38	Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping. Frontiers in Plant Science, 2018, 9, 507.	1.7	31
39	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	3.1	31
40	A century of guayule: Comprehensive genetic characterization of the US national guayule (Parthenium) Tj ETQq(00rgBT 2.5	/Oyerlock 10
41	New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. Frontiers in Plant Science, 2014, 5, 426.	1.7	29
42	Engineering the production of conjugated fatty acids in <i>Arabidopsis thaliana</i> leaves. Plant Biotechnology Journal, 2017, 15, 1010-1023.	4.1	29
43	Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds Â. Plant Physiology, 2012, 161, 72-80.	2.3	28
44	Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. Plant Molecular Biology, 2015, 89, 113-126.	2.0	27
45	Cloning, functional analysis, and subcellular localization of two isoforms of NADH:cytochrome b5 reductase from developing seeds of tung (Vernicia fordii). Plant Science, 2005, 169, 375-385.	1.7	22
46	Production of linolenic acid in yeast cells expressing an omega-3 desaturase from tung (Aleurites) Tj ETQq0 0 0 r	gBT /Over 0.8	lock 10 Tf 50
47	The C-terminus of cytochrome b5 confers endoplasmic reticulum specificity by preventing spontaneous insertion into membranes. Biochemical Journal, 2007, 401, 701-709.	1.7	18
48	Genomic diversity and phylogenetic relationships in the genus Parthenium (Asteraceae). Industrial Crops and Products, 2015, 76, 920-929.	2.5	17
49	An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane. Plant and Cell Physiology, 2019, 60, 516-537.	1.5	16
50	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	1.7	16
51	Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells. Applied Microbiology and Biotechnology, 2009, 83, 117-125.	1.7	14
52	Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie, 2020, 169, 41-53.	1.3	14
53	Response of high leaf-oil <i>Arabidopsis thaliana</i> plant lines to biotic or abiotic stress. Plant Signaling and Behavior, 2018, 13, e1464361.	1.2	11
54	Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 92, 1207-1217.	1.7	10

#	Article	IF	CITATIONS
55	CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signaling and Behavior, 2014, 9, e27723.	1.2	10
56	Lipid Droplet–Peroxisome Connections in Plants. Contact (Thousand Oaks (Ventura County, Calif)), 2020, 3, 251525642090876.	0.4	10
57	The N termini of Brassica and tung omega-3 fatty acid desaturases mediate proteasome-dependent protein degradation in plant cells. Plant Signaling and Behavior, 2011, 6, 422-425.	1.2	9
58	Genome-wide association study identifies acyl-lipid metabolism candidate genes involved in the genetic control of natural variation for seed fatty acid traits in Brassica napus L Industrial Crops and Products, 2020, 145, 112080.	2.5	8
59	Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway. Botany, 2018, 96, 79-96.	0.5	5