
Polona ŽnidarÅ;iÄ•Plazl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5814450/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A brief overview of global biotechnology. Biotechnology and Biotechnological Equipment, 2021, 35, S5-S14.	1.3	14
2	Let the Biocatalyst Flow. Acta Chimica Slovenica, 2021, 68, 1-16.	0.6	15
3	Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. Bioresource Technology, 2021, 330, 124997.	9.6	45
4	Biocatalytic process intensification via efficient biocatalyst immobilization, miniaturization, and process integration. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100546.	5.9	31
5	Hydrogel-Based Enzyme and Cofactor Co-Immobilization for Efficient Continuous Transamination in a Microbioreactor. Frontiers in Bioengineering and Biotechnology, 2021, 9, 752064.	4.1	17
6	Let the Biocatalyst Flow. Acta Chimica Slovenica, 2021, 68, 1-16.	0.6	2
7	Development of a Microfluidic Platform for R-Phycoerythrin Purification Using an Aqueous Micellar Two-Phase System. ACS Sustainable Chemistry and Engineering, 2020, 8, 17097-17105.	6.7	11
8	Separation and purification of biomacromolecules based on microfluidics. Green Chemistry, 2020, 22, 4391-4410.	9.0	47
9	Covalent Immobilization of Microbial Cells on Microchannel Surfaces. Methods in Molecular Biology, 2020, 2100, 417-426.	0.9	2
10	Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator. Chemical and Biochemical Engineering Quarterly, 2020, 34, 73-78.	0.9	1
11	Process Intensification and Miniaturization of Chemical and Biochemical Processes. Computer Aided Chemical Engineering, 2019, , 1801-1806.	0.5	6
12	The Promises and the Challenges of Biotransformations in Microflow. Biotechnology Journal, 2019, 14, e1800580.	3.5	45
13	Copolymeric Hydrogel-Based Immobilization of Yeast Cells for Continuous Biotransformation of Fumaric Acid in a Microreactor. Micromachines, 2019, 10, 867.	2.9	16
14	Characterization of an enzymatic packed-bed microreactor: Experiments and modeling. Chemical Engineering Journal, 2018, 350, 541-550.	12.7	20
15	Intensification of biocatalytic processes by reactor miniaturization. Journal of Biotechnology, 2018, 280, S13.	3.8	0
16	Development of microreactors with surface-immobilized biocatalysts for continuous transamination. New Biotechnology, 2018, 47, 18-24.	4.4	24
17	4th International Conference Implementation of Microreactor Technology in Biotechnology (IMTB) Tj ETQq1 1 0.	.784314 rg 3.4	gBT /Overlock
18	Theoretical and experimental study of enzyme kinetics in a microreactor system with	19.7	40

surface-immobilized biocatalyst. Chemical Engineering Journal, 2017, 313, 374-381.

Polona ŽnidarÅiiÄ•Plazl

#	Article	IF	CITATIONS
19	Development of a miniaturized packed bed reactor with ï‰ -transaminase immobilized in LentiKats ®. Process Biochemistry, 2017, 52, 63-72.	3.7	45
20	Biotransformations in microflow systems: Bridging the gap between academia and industry. Journal of Flow Chemistry, 2017, 7, 111-117.	1.9	31
21	Microbioreactors. , 2017, , 414-427.		Ο
22	Implementation of Microreactor Technology in Biotechnology — IMTB 2015 Conference. Journal of Flow Chemistry, 2016, 6, 1-2.	1.9	1
23	Continuous lipase B-catalyzed isoamyl acetate synthesis in a two-liquid phase system using corning® AFRâ,,¢ module coupled with a membrane separator enabling biocatalyst recycle. Journal of Flow Chemistry, 2016, 6, 33-38.	1.9	29
24	Experimental studies and modeling of α-amylase aqueous two-phase extraction within a microfluidic device. Microfluidics and Nanofluidics, 2015, 19, 75-83.	2.2	30
25	Dechlorination of polychlorinated phenols on bimetallic Pd/Fe catalyst in a magnetically stabilized fluidized bed. Chemical Engineering Journal, 2015, 274, 50-60.	12.7	23
26	Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends in Biotechnology, 2015, 33, 302-314.	9.3	167
27	Evaluation of biotreatability of ionic liquids in aerobic and anaerobic conditions. Water Science and Technology, 2014, 70, 698-704.	2.5	9
28	Evaluation of Diffusion Coefficient Determination using a Microfluidic Device. Chemical and Biochemical Engineering Quarterly, 2014, 28, 215-223.	0.9	35
29	Surface cell immobilization within perfluoroalkoxy microchannels. Applied Surface Science, 2014, 320, 810-817.	6.1	17
30	A comparative study of ultrasound-, microwave-, and microreactor-assisted imidazolium-based ionic liquid synthesis. Green Processing and Synthesis, 2013, 2, 579-590.	3.4	36
31	Integrated lipase-catalyzed isoamyl acetate synthesis in a miniaturized system with enzyme and ionic liquid recycle. Green Processing and Synthesis, 2013, 2, 561-568.	3.4	20
32	Implementation of Microreactor Technology in Biotechnology (IMTB) 2013 Conference: a new community for new perspectives. Green Processing and Synthesis, 2013, 2, .	3.4	0
33	Implementation of Microreactor Technology in Biotechnology (IMTB 2013). Green Processing and Synthesis, 2012, 1, .	3.4	Ο
34	Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochemistry, 2012, 47, 1344-1350.	3.7	56
35	Ionic liquid-based aqueous two-phase extraction within a microchannel system. Separation and Purification Technology, 2012, 97, 172-178.	7.9	90
36	Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions. Chemical Engineering Journal, 2012, 189-190, 376-382.	12.7	32

Polona ŽnidarÅiiÄ•Plazl

#	Article	IF	CITATIONS
37	Continuous steroid biotransformations in microchannel reactors. New Biotechnology, 2012, 29, 227-234.	4.4	20
38	Continuous synthesis of l-malic acid using whole-cell microreactor. Process Biochemistry, 2012, 47, 1102-1107.	3.7	42
39	Optimization of Laccase Production by Trametes versicolor Cultivated on Industrial Waste. Applied Biochemistry and Biotechnology, 2012, 166, 36-46.	2.9	36
40	Ionic Liquids within Microfluidic Devices. , 2011, , .		3
41	l-Malic acid production within a microreactor with surface immobilised fumarase. Microfluidics and Nanofluidics, 2011, 10, 627-635.	2.2	37
42	Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catalysis Today, 2010, 157, 315-320.	4.4	22
43	On the feasibility of in situ steroid biotransformation and product recovery in microchannels. Chemical Engineering Journal, 2010, 160, 708-714.	12.7	24
44	Oxidation of Coniferyl Alcohol Catalyzed by Laccases from Trametes versicolor. Acta Chimica Slovenica, 2010, 57, 110-7.	0.6	5
45	Immobilization of yeast cells within microchannels of different materials. Acta Chimica Slovenica, 2010, 57, 144-9.	0.6	15
46	Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochemistry, 2009, 44, 1115-1121.	3.7	73
47	Modelling of laccase-catalyzed l-DOPA oxidation in a microreactor. Chemical Engineering Journal, 2009, 149, 383-388.	12.7	45
48	Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n–heptane two-phase system at the microreactor scale. Lab on A Chip, 2009, 9, 3385.	6.0	64
49	Batch and continuous transformation of progesterone byRhizopus nigricanspellets in the presence of β-cyclodextrin. Biocatalysis and Biotransformation, 2007, 25, 16-23.	2.0	20
50	Steroid extraction in a microchannel system—mathematical modelling and experiments. Lab on A Chip, 2007, 7, 883-889.	6.0	113
51	The influence of β-cyclodextrin on the kinetics of progesterone transformation byRhizopus nigricans. Biocatalysis and Biotransformation, 2005, 23, 299-305.	2.0	21
52	Dechlorination ofp-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 5099-5106.	3.7	79
53	Title is missing!. World Journal of Microbiology and Biotechnology, 2000, 16, 589-593.	3.6	39
54	Chitin contents in different morphological forms ofRhizopus nigricans. Folia Microbiologica, 1999, 44, 557-560.	2.3	8

#	Article	IF	CITATIONS
55	Induction of steroidal 11α-hydroxylase activity in the filamentous fungus Rhizopus nigricans by tomatidine and Primula veris root extract. Physiological and Molecular Plant Pathology, 1999, 55, 251-254.	2.5	5
56	Studies of a pelleted growth form of Rhizopus nigricans as a biocatalyst for progesterone 111±-hydroxylation. Journal of Biotechnology, 1998, 60, 207-216.	3.8	43
57	The growth form of the inducing microorganism and chitin addition affect mycolytic enzyme production byTrichoderma harzianum. Journal of Industrial Microbiology, 1995, 15, 397-400.	0.9	3
58	Laboratory-scale biosynthesis ofTrichoderma mycolytic enzymes for protoplast release fromCochliobolus lunatus. Journal of Industrial Microbiology, 1992, 9, 115-119.	0.9	9
59	The Potential of Brewer's Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	28