Angela Logan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813678/publications.pdf

Version: 2024-02-01

36	5,459	25	34
papers	citations	h-index	g-index
37	37	37	9535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515, 431-435.	13.7	1,989
2	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	13.5	1,396
3	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metabolism, 2016, 23, 725-734.	7.2	296
4	Measurement of H2O2 within Living Drosophila during Aging Using a Ratiometric Mass Spectrometry Probe Targeted to the Mitochondrial Matrix. Cell Metabolism, 2011, 13, 340-350.	7.2	267
5	Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2014, 70, 204-213.	1.3	126
6	Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2322-2332.	1.1	120
7	Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nature Metabolism, 2019, 1, 966-974.	5.1	103
8	Mitochondria†Targeted Antioxidants in the Treatment of Disease. Annals of the New York Academy of Sciences, 2008, 1147, 105-111.	1.8	96
9	<i>In vivo</i> levels of mitochondrial hydrogen peroxide increase with age in mt <scp>DNA</scp> mutator mice. Aging Cell, 2014, 13, 765-768.	3.0	94
10	Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II. Cell Reports, 2017, 18, 2105-2112.	2.9	90
11	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Scientific Reports, 2017, 7, 9079.	1.6	76
12	MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chemical Biology, 2017, 24, 1285-1298.e12.	2.5	69
13	Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. American Journal of Pathology, 2018, 188, 2704-2716.	1.9	65
14	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2018, 51, 1701024.	3.1	64
15	Using exomarkers to assess mitochondrial reactive species in vivo. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 923-930.	1.1	55
16	A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radical Biology and Medicine, 2014, 67, 437-450.	1.3	44
17	Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. ELife, 2018, 7, .	2.8	44
18	In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder. Free Radical Biology and Medicine, 2016, 96, 1-12.	1.3	42

#	Article	lF	CITATIONS
19	Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. Redox Biology, 2020, 36, 101640.	3.9	42
20	Complex I Deficiency Due to Selective Loss of Ndufs4 in the Mouse Heart Results in Severe Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e94157.	1.1	41
21	Selective Disruption of Mitochondrial Thiol Redox State in Cells and InÂVivo. Cell Chemical Biology, 2019, 26, 449-461.e8.	2.5	41
22	Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Science Advances, 2020, 6, eabb1929.	4.7	41
23	Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation. Journal of Molecular and Cellular Cardiology, 2018, 123, 88-91.	0.9	38
24	Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA. Journal of Biological Chemistry, 2017, 292, 7761-7773.	1.6	34
25	Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron, 2015, 71, 8444-8453.	1.0	32
26	A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radical Biology and Medicine, 2020, 147, 37-47.	1.3	32
27	Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. Cardiovascular Drugs and Therapy, 2022, 36, 1-13.	1.3	28
28	Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. Communications Biology, 2020, 3, 692.	2.0	25
29	Glycolysis promotes caspase-3 activation in lipid rafts in T cells. Cell Death and Disease, 2018, 9, 62.	2.7	15
30	Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia–reperfusion injury in kidney transplantation models. British Journal of Surgery, 2021, 108, 1072-1081.	0.1	15
31	Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus, 2017, 7, 20160151.	1.5	11
32	Mitochondria antioxidant protection against cardiovascular dysfunction programmed by earlyâ€onset gestational hypoxia. FASEB Journal, 2021, 35, e21446.	0.2	11
33	Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2020, 34, 823-834.	1.3	9
34	Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677.	0.2	8
35	182 MITOCHONDRIAL DNA DAMAGE PROMOTES ATHEROSCLEROSIS AND CORRELATES WITH HIGHER RISK PLAQUE IN HUMANS. Heart, 2013, 99, A103.2-A103.	1.2	0
36	208â€Cardioprotection by the mitochondria-targeted superoxide generator mitoparaquat in a murine model of acute myocardial ischaemia reperfusion injury. Heart, 2017, 103, A138.3-A139.	1.2	0