List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813649/publications.pdf Version: 2024-02-01

CHDIS D IONES

#	Article	IF	CITATIONS
1	Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 642.	0.8	43
2	Observed climate change constrains the likelihood of extreme future global warming. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 76.	0.8	12
3	Role of terrestrial ecosystems in determining CO ₂ stabilization and recovery behaviour. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 682.	0.8	18
4	South American fires and their impacts on ecosystems increase with continued emissions. Climate Resilience and Sustainability, 2022, 1, e8.	0.9	15
5	An alert system for Seasonal Fire probability forecast for South American Protected Areas. Climate Resilience and Sustainability, 2022, 1, .	0.9	9
6	The climate science for service partnership Brazil. Climate Resilience and Sustainability, 2022, 1, .	0.9	1
7	Nitrogen cycle impacts on CO ₂ fertilisation and climate forcing of land carbon stores. Environmental Research Letters, 2022, 17, 044072.	2.2	6
8	How close are we to 1.5 deg <scp>C</scp> or 2 deg <scp>C</scp> of global warming?. Weather, 2022, 77, 147-148.	0.6	2
9	Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth System Dynamics, 2022, 13, 885-909.	2.7	17
10	Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
11	What does the Paris climate change agreement mean for local policy? Downscaling the remaining global carbon budget to sub-national areas. Renewable and Sustainable Energy Transition, 2022, 2, 100030.	1.4	6
12	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	1.3	32
13	The Climate Response to Emissions Reductions Due to COVIDâ€19: Initial Results From CovidMIP. Geophysical Research Letters, 2021, 48, e2020GL091883.	1.5	43
14	Compatible Fossil Fuel CO2 Emissions in the CMIP6 Earth System Models' Historical and Shared Socioeconomic Pathway Experiments of the Twenty-First Century. Journal of Climate, 2021, 34, 2853-2875.	1.2	23
15	Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP. Geoscientific Model Development, 2021, 14, 3683-3695.	1.3	28
16	Methane removal and the proportional reductions in surface temperature and ozone. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210104.	1.6	33
17	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	1.6	44
10	Numerical modeling of the global elimete and earbon guele system 2021 (7.01		0

Numerical modeling of the global climate and carbon cycle system., 2021, , 67-91.

0

#	Article	IF	CITATIONS
19	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	5.4	68
20	Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 2020, 10, 913-919.	8.1	400
21	Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. One Earth, 2020, 3, 145-149.	3.6	61
22	Implementation of U.K. Earth System Models for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001946.	1.3	83
23	So What Is in an Earth System Model?. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001967.	1.3	3
24	El Niño Driven Changes in Global Fire 2015/16. Frontiers in Earth Science, 2020, 8, .	0.8	28
25	Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO ₂ . Biogeosciences, 2020, 17, 2987-3016.	1.3	87
26	The costs of achieving climate targets and the sources of uncertainty. Nature Climate Change, 2020, 10, 329-334.	8.1	48
27	Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environmental Research Letters, 2020, 15, 074019.	2.2	27
28	Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation. Environmental Research Letters, 2020, 15, 124061.	2.2	35
29	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	1.3	255
30	Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences, 2020, 17, 5129-5148.	1.3	60
31	Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geoscientific Model Development, 2020, 13, 4067-4089.	1.3	14
32	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	1.3	448
33	Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geoscientific Model Development, 2019, 12, 179-193.	1.3	41
34	The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development, 2019, 12, 4375-4385.	1.3	56
35	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	8.1	407
36	Will Fire Danger Be Reduced by Using Solar Radiation Management to Limit Global Warming to 1.5°C Compared to 2.0°C?. Geophysical Research Letters, 2018, 45, 3644-3652.	1.5	15

#	Article	IF	CITATIONS
37	CO ₂ loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 2018, 13, 024024.	2.2	22
38	Can reducing black carbon and methane below RCP2.6 levels keep global warming below 1.5 °C?. Atmospheric Science Letters, 2018, 19, e821.	0.8	12
39	Models meet data: Challenges and opportunities in implementing land management in Earth system models. Global Change Biology, 2018, 24, 1470-1487.	4.2	86
40	A successful prediction of the record CO ₂ rise associated with the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
41	A Large Committed Longâ€Term Sink of Carbon due to Vegetation Dynamics. Earth's Future, 2018, 6, 1413-1432.	2.4	24
42	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	8.1	188
43	The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development, 2018, 11, 1133-1160.	1.3	113
44	Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geoscientific Model Development, 2018, 11, 2857-2873.	1.3	49
45	Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere. Scientific Reports, 2018, 8, 10962.	1.6	7
46	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
47	Narrowing the Range of Future Climate Projections Using Historical Observations of Atmospheric CO ₂ . Journal of Climate, 2017, 30, 3039-3053.	1.2	20
48	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
49	Effective radiative forcing from historical land use change. Climate Dynamics, 2017, 48, 3489-3505.	1.7	33
50	Land management: data availability and process understanding for global change studies. Global Change Biology, 2017, 23, 512-533.	4.2	142
51	Assessing the impacts of 1.5â€Â°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	1.3	410
52	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	1.3	186
53	The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 2016, 9, 2973-2998.	1.3	343
54	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	1.3	115

#	Article	IF	CITATIONS
55	Research priorities for negative emissions. Environmental Research Letters, 2016, 11, 115007.	2.2	138
56	Simulating the Earth system response to negative emissions. Environmental Research Letters, 2016, 11, 095012.	2.2	98
57	Sources of Uncertainty in Future Projections of the Carbon Cycle. Journal of Climate, 2016, 29, 7203-7213.	1.2	19
58	El Niño and a record CO2 rise. Nature Climate Change, 2016, 6, 806-810.	8.1	208
59	Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environmental Research Letters, 2016, 11, 055007.	2.2	108
60	Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	1.9	343
61	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	8.1	973
62	Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53, 785-818.	9.0	432
63	Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Clobal Biogeochemical Cycles, 2015, 29, 842-853.	1.9	38
64	The mechanisms of North Atlantic CO ₂ uptake in a large Earth System Model ensemble. Biogeosciences, 2015, 12, 4497-4508.	1.3	16
65	Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences, 2015, 12, 5211-5228.	1.3	81
66	Nitrogen Availability Reduces CMIP5 Projections of Twenty-First-Century Land Carbon Uptake*. Journal of Climate, 2015, 28, 2494-2511.	1.2	87
67	Negative emissions physically needed to keep global warming below 2 °C. Nature Communications, 2015, 6, 7958.	5.8	265
68	Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 2014, 11, 2341-2356.	1.3	259
69	Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models. Journal of Climate, 2014, 27, 3869-3888.	1.2	62
70	Betting on negative emissions. Nature Climate Change, 2014, 4, 850-853.	8.1	846
71	Full effects of land use change in the representative concentration pathways. Environmental Research Letters, 2014, 9, 114014.	2.2	34
72	Sensitivity of a coupled climate model to canopy interception capacity. Climate Dynamics, 2014, 42, 1715-1732.	1.7	33

#	Article	IF	CITATIONS
73	Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. Journal of Climate, 2014, 27, 511-526.	1.2	870
74	Climatic Impacts of Land-Use Change due to Crop Yield Increases and a Universal Carbon Tax from a Scenario Model*. Journal of Climate, 2014, 27, 1413-1424.	1.2	19
75	Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 141-162.	1.3	121
76	A retrospective analysis of pan Arctic permafrost using the JULES land surface model. Climate Dynamics, 2013, 41, 1025-1038.	1.7	35
77	Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494, 341-344.	13.7	608
78	Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. Journal of Climate, 2013, 26, 6859-6881.	1.2	329
79	CO2 Emissions Determined by HadGEM2-ES to be Compatible with the Representative Concentration Pathway Scenarios and Their Extensions. Journal of Climate, 2013, 26, 4381-4397.	1.2	12
80	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	5.4	358
81	Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach. Journal of Climate, 2013, 26, 4897-4909.	1.2	67
82	Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models. Journal of Climate, 2013, 26, 5289-5314.	1.2	576
83	Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways. Journal of Climate, 2013, 26, 4398-4413.	1.2	248
84	Comparing Tropical Forest Projections from Two Generations of Hadley Centre Earth System Models, HadGEM2-ES and HadCM3LC. Journal of Climate, 2013, 26, 495-511.	1.2	83
85	Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmospheric Chemistry and Physics, 2013, 13, 2793-2825.	1.9	517
86	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	1.3	11
87	High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 2012, 7, 024002.	2.2	241
88	Reversibility in an Earth System model in response to CO ₂ concentration changes. Environmental Research Letters, 2012, 7, 024013.	2.2	102
89	Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere, 2012, 6, 1063-1076.	1.5	94
90	Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. Journal of Geophysical Research, 2012, 117, .	3.3	69

#	Article	IF	CITATIONS
91	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	1.3	267
92	Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model. Biogeosciences, 2012, 9, 4739-4756.	1.3	25
93	Quantifying Environmental Drivers of Future Tropical Forest Extent. Journal of Climate, 2011, 24, 1337-1349.	1.2	29
94	Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	168
95	The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.	1.3	803
96	Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences, 2011, 8, 387-414.	1.3	47
97	Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmospheric Chemistry and Physics, 2011, 11, 4371-4389.	1.9	121
98	When could global warming reach 4°C?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 67-84.	1.6	149
99	Harmonization of land-use scenarios for the period 1500–2100: 600Âyears of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 2011, 109, 117-161.	1.7	1,080
100	The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 2011, 4, 701-722.	1.3	804
101	The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 2011, 4, 723-757.	1.3	765
102	Development and evaluation of an Earth-System model – HadGEM2. Geoscientific Model Development, 2011, 4, 1051-1075.	1.3	1,141
103	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	4.2	223
104	IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate. Geoscientific Model Development, 2010, 3, 679-687.	1.3	40
105	Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics, 2010, 48, .	9.0	199
106	Benchmarking coupled climate arbon models against longâ€ŧerm atmospheric CO ₂ measurements. Global Biogeochemical Cycles, 2010, 24, .	1.9	97
107	The exit strategy. Nature Climate Change, 2009, 1, 56-58.	8.1	24
108	Quantifying Carbon Cycle Feedbacks. Journal of Climate, 2009, 22, 5232-5250.	1.2	225

#	Article	IF	CITATIONS
109	How difficult is it to recover from dangerous levels of global warming?. Environmental Research Letters, 2009, 4, 014012.	2.2	102
110	Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation. Climate Dynamics, 2009, 32, 287-299.	1.7	14
111	Past, present and future vegetation-cloud feedbacks in the Amazon Basin. Climate Dynamics, 2009, 32, 741-751.	1.7	18
112	Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering. Climatic Change, 2009, 92, 261-273.	1.7	20
113	The weather and climate of the tropics: Part 10 – Tropical agriculture. Weather, 2009, 64, 156-161.	0.6	2
114	Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 2009, 458, 1163-1166.	13.7	1,282
115	Committed terrestrial ecosystem changes due to climate change. Nature Geoscience, 2009, 2, 484-487.	5.4	152
116	Contributions of carbon cycle uncertainty to future climate projection spread. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, 355-360.	0.8	80
117	Committed ecosystem change due to climate change. IOP Conference Series: Earth and Environmental Science, 2009, 6, 062017.	0.2	0
118	Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils – Climate Opportunities and Threats. Environmental Science and Engineering, 2009, , 81-111.	0.1	5
119	Sources of uncertainty in global modelling of future soil organic carbon storage. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 283-315.	0.1	15
120	Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 2008, 453, 212-215.	13.7	326
121	Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and transâ€African migration of plants and animals. Global Change Biology, 2008, 14, 827-840.	4.2	80
122	Evaluation of the terrestrial carbon cycle, future plant geography and climateâ€carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008, 14, 2015-2039.	4.2	1,097
123	Illuminating the Modern Dance of Climate and CO ₂ . Science, 2008, 321, 1642-1644.	6.0	90
124	What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy?. Environmental Research Letters, 2008, 3, 044002.	2.2	14
125	Long-Term Climate Commitments Projected with Climate–Carbon Cycle Models. Journal of Climate, 2008, 21, 2721-2751.	1.2	232
126	Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation–climate interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1865-1871.	1.8	15

CHRIS D JONES

#	Article	IF	CITATIONS
127	Towards quantifying uncertainty in predictions of Amazon â€ [~] dieback'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1857-1864.	1.8	139
128	Competing roles of rising CO ₂ and climate change in the contemporary European carbon balance. Biogeosciences, 2008, 5, 1-10.	1.3	30
129	ENVIRONMENT: Tropical Forests and Climate Policy. Science, 2007, 316, 985-986.	6.0	386
130	Consequences of the evolution of C4photosynthesis for surface energy and water exchange. Journal of Geophysical Research, 2007, 112, .	3.3	10
131	Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 2007, 448, 1037-1041.	13.7	570
132	Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems and Environment, 2007, 122, 114-124.	2.5	66
133	Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 603-613.	0.8	54
134	Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 2005, 11, 154-166.	4.2	318
135	Strong present-day aerosol cooling implies a hot future. Nature, 2005, 435, 1187-1190.	13.7	577
136	Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dynamics, 2005, 25, 189-204.	1.7	83
137	On the significance of atmospheric CO2growth rate anomalies in 2002-2003. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	68
138	Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 539-547.	1.8	92
139	Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 2004, 78, 137.	1.3	635
140	The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 2004, 78, 157.	1.3	387
141	Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 642-648.	0.8	127
142	Strong carbon cycle feedbacks in a climate model with interactive CO2and sulphate aerosols. Geophysical Research Letters, 2003, 30, .	1.5	99
143	Effect of Climate Change on Isoprene Emissions and Surface Ozone Levels. Geophysical Research Letters, 2003, 30, .	1.5	186
144	A Fast Ocean GCM without Flux Adjustments. Journal of Atmospheric and Oceanic Technology, 2003, 20, 1857-1868.	0.5	28

9

#	Article	IF	CITATIONS
145	Modelling vegetation and the carbon cycle as interactive elements of the climate system. International Geophysics, 2002, , 259-279.	0.6	37
146	Modeling the volcanic signal in the atmospheric CO2record. Global Biogeochemical Cycles, 2001, 15, 453-465.	1.9	109
147	The Carbon Cycle Response to ENSO: A Coupled Climate–Carbon Cycle Model Study. Journal of Climate, 2001, 14, 4113-4129.	1.2	151
148	Extending North Atlantic Oscillation reconstructions back to 1500. Atmospheric Science Letters, 2001, 2, 114-124.	0.8	332
149	Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408, 184-187.	13.7	3,360
150	A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteorological Applications, 1997, 4, 269-277.	0.9	141
151	How Much CO2 Will We Have in the Air This Year?. Frontiers for Young Minds, 0, 9, .	0.8	1
152	Tipping Points: Climate Surprises. Frontiers for Young Minds, 0, 9, .	0.8	1
153	A perspective for advancing climate prediction services in Brazil. Climate Resilience and Sustainability, 0, , .	0.9	2
154	What Is Causing Our Climate To Change So Quickly Now?. Frontiers for Young Minds, 0, 10, .	0.8	1
155	What Do We Mean by "Climate―and "Climate Change� Frontiers for Young Minds 0, 10	0.8	0