Sheila V Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5813113/publications.pdf

Version: 2024-02-01

414414 304743 1,555 32 22 32 citations h-index g-index papers 33 33 33 1766 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clinical Science, 2017, 131, 2201-2221.	4.3	256
2	Connexins in cancer: bridging the gap to the clinic. Oncogene, 2019, 38, 4429-4451.	5.9	130
3	Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiology, 2010, 5, 1493-1506.	2.0	128
4	Control of human papillomavirus gene expression by alternative splicing. Virus Research, 2017, 231, 83-95.	2.2	94
5	Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. Virology, 2007, 360, 172-181.	2.4	68
6	RNA splicing factors regulated by HPV16 during cervical tumour progression. Journal of Pathology, 2009, 219, 383-391.	4.5	65
7	Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses, 2017, 9, 245.	3.3	65
8	SF2/ASF Binds the Human Papillomavirus Type 16 Late RNA Control Element and Is Regulated during Differentiation of Virus-Infected Epithelial Cells. Journal of Virology, 2004, 78, 10598-10605.	3.4	62
9	The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene, 2003, 22, 7969-7980.	5.9	61
10	The alternative splicing factor hnRNP A1 is up-regulated during virus-infected epithelial cell differentiation and binds the human papillomavirus type 16 late regulatory element. Virus Research, 2008, 131, 189-198.	2.2	48
11	RNA-Seq Analysis of Differentiated Keratinocytes Reveals a Massive Response to Late Events during Human Papillomavirus 16 Infection, Including Loss of Epithelial Barrier Function. Journal of Virology, 2017, 91, .	3.4	47
12	Human Papillomavirus Type 16 E2 Protein Transcriptionally Activates the Promoter of a Key Cellular Splicing Factor, SF2/ASF. Journal of Virology, 2009, 83, 357-367.	3.4	46
13	Human Papillomavirus Type 1 E1^E4 Protein Is a Potent Inhibitor of the Serine-Arginine (SR) Protein Kinase SRPK1 and Inhibits Phosphorylation of Host SR Proteins and of the Viral Transcription and Replication Regulator E2. Journal of Virology, 2014, 88, 12599-12611.	3.4	42
14	The Human Papillomavirus Type 31 Late 3′ Untranslated Region Contains a Complex Bipartite Negative Regulatory Element. Journal of Virology, 2002, 76, 5993-6003.	3.4	40
15	Activity of the Human Papillomavirus Type 16 Late Negative Regulatory Element Is Partly due to Four Weak Consensus 5′ Splice Sites That Bind a U1 snRNP-Like Complex. Journal of Virology, 2003, 77, 5167-5177.	3.4	40
16	Human Papillomavirus 16 Oncoprotein Expression Is Controlled by the Cellular Splicing Factor SRSF2 (SC35). Journal of Virology, 2015, 89, 5276-5287.	3.4	40
17	Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. International Journal of Molecular Sciences, 2018, 19, 1645.	4.1	40
18	Human Papillomavirus E2 Protein: Linking Replication, Transcription, and RNA Processing. Journal of Virology, 2016, 90, 8384-8388.	3.4	38

#	Article	IF	CITATIONS
19	Effects of human papillomavirus type 16 E5 deletion mutants on epithelial morphology: functional characterization of each transmembrane domain. Journal of General Virology, 2010, 91, 521-530.	2.9	37
20	Reduced expression of multiple gap junction proteins is a feature of cervical dysplasia. Molecular Cancer, 2005, 4, 31.	19.2	28
21	Papillomavirus 3' UTR regulatory elements. Frontiers in Bioscience - Landmark, 2008, Volume, 5646.	3.0	26
22	Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biology, 2021, 19, e3001065.	5.6	26
23	Alternative splicing in human tumour viruses: a therapeutic target?. Biochemical Journal, 2012, 445, 145-156.	3.7	23
24	Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1) – splicing factor axis. Journal of General Virology, 2020, 101, 523-532.	2.9	23
25	A functional interaction between the MAGUK protein hDlg and the gap junction protein connexin 43 in cervical tumour cells. Biochemical Journal, 2012, 446, 9-21.	3.7	22
26	HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells. Viruses, 2015, 7, 5243-5256.	3.3	18
27	Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells, 2019, 8, 120.	4.1	13
28	Human papillomavirus gene expression is controlled by host cell splicing factors. Biochemical Society Transactions, 2012, 40, 773-777.	3.4	9
29	Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs. Oncolytic Virotherapy, 2013, 2, 57.	6.0	6
30	Assessing the detection of human papillomavirus late mRNA in liquid base cytology samples for risk stratification of cervical disease. Journal of Medical Virology, 2014, 86, 627-633.	5.0	3
31	Risk stratification of cervical disease using detection of human papillomavirus (HPV) E4 protein and cellular MCM protein in clinical liquid based cytology samples. Journal of Clinical Virology, 2018, 108, 19-25.	3.1	3
32	Nonsense-mediated decay breaks the circle?. Biochemical Journal, 2003, 373, e5-e6.	3.7	2