Tarek Shazly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/581269/publications.pdf Version: 2024-02-01

TADER SHAZIV

#	Article	IF	CITATIONS
1	Mechanoscopy: A Novel Device and Procedure for <i>in vivo</i> Detection of Chronic Colitis in Mice. Inflammatory Bowel Diseases, 2022, 28, 1143-1150.	1.9	2
2	Self-Assembling Toroidal Cell Constructs for Tissue Engineering Applications. Microscopy and Microanalysis, 2022, , 1-10.	0.4	0
3	Evaluation of the Stress–Growth Hypothesis in Saphenous Vein Perfusion Culture. Annals of Biomedical Engineering, 2021, 49, 487-501.	2.5	6
4	Changes in Myocardial Microstructure and Mechanics With Progressive LeftÂVentricular Pressure Overload. JACC Basic To Translational Science, 2020, 5, 463-480.	4.1	9
5	Speckle-Tracking Echocardiography Enables Model-Based Identification of Regional Stiffness Indices in the Left Ventricular Myocardium. Cardiovascular Engineering and Technology, 2020, 11, 176-187.	1.6	1
6	A Two-Dimensional Model of Hypertension-Induced Arterial Remodeling With Account for Stress Interaction Between Elastin and Collagen. Journal of Biomechanical Engineering, 2020, 142, .	1.3	2
7	Geometric determinants of local hemodynamics in severe carotid artery stenosis. Computers in Biology and Medicine, 2019, 114, 103436.	7.0	23
8	Intrinsic coating morphology modulates acute drug transfer in drug-coated balloon therapy. Scientific Reports, 2019, 9, 6839.	3.3	13
9	A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 61-72.	3.1	17
10	Constitutive modeling of compressible type-I collagen hydrogels. Medical Engineering and Physics, 2018, 53, 39-48.	1.7	18
11	Experimental and numerical studies of two arterial wall delamination modes. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 321-330.	3.1	16
12	Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids. Journal of Biomechanical Engineering, 2018, 140, .	1.3	13
13	Determination of Viscoelastic Properties of human Carotid Atherosclerotic Plaque by Inverse Boundary Value Analysis. IOP Conference Series: Materials Science and Engineering, 2018, 381, 012171.	0.6	2
14	Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial Arteries, and Saphenous Veins. Journal of Vascular Research, 2018, 55, 255-267.	1.4	5
15	Comparative mechanics of diverse mammalian carotid arteries. PLoS ONE, 2018, 13, e0202123.	2.5	23
16	Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H958-H967.	3.2	32
17	Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study. PLoS ONE, 2018, 13, e0192032.	2.5	25
18	The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties. Acta Biomaterialia, 2016, 45, 286-295.	8.3	11

TAREK SHAZLY

#	Article	IF	CITATIONS
19	Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens. Journal of Visualized Experiments, 2016, , e53625.	0.3	7
20	A mechanical argument for the differential performance of coronary artery grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 93-105.	3.1	37
21	The biaxial active mechanical properties of the porcine primary renal artery. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 28-37.	3.1	30
22	Enhancing physiologic simulations using supervised learning on coarse mesh solutions. Journal of the Royal Society Interface, 2015, 12, 20141073.	3.4	16
23	Degree of bioresorbable vascular scaffold expansion modulates loss of essential function. Acta Biomaterialia, 2015, 26, 195-204.	8.3	10
24	On the Uniaxial Ring Test of Tissue Engineered Constructs. Experimental Mechanics, 2015, 55, 41-51.	2.0	33
25	Effect of Spinal Cord Compression on Local Vascular Blood Flow and Perfusion Capacity. PLoS ONE, 2014, 9, e108820.	2.5	12
26	A STRUCTURE-MOTIVATED MODEL OF THE PASSIVE MECHANICAL RESPONSE OF THE PRIMARY PORCINE RENAL ARTERY. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450033.	0.7	13
27	Assessment of Material By-Product Fate from Bioresorbable Vascular Scaffolds. Annals of Biomedical Engineering, 2012, 40, 955-965.	2.5	19