Yuichiro Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5812470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey of monitoring tap water hardness in Japan and its distribution patterns. Scientific Reports, 2021, 11, 13546.	1.6	24
2	Nonsense-Mediated mRNA Decay Deficiency Affects the Auxin Response and Shoot Regeneration in Arabidopsis. Plant and Cell Physiology, 2019, 60, 2000-2014.	1.5	9
3	An Early Arising Role of the MicroRNA156/529-SPL Module in Reproductive Development Revealed by the Liverwort Marchantia polymorpha. Current Biology, 2019, 29, 3307-3314.e5.	1.8	34
4	Production of the herb <i>Ruta chalepensis</i> L. expressing amyloid β-GFP fusion protein. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 295-302.	1.6	3
5	DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes. Plant, Cell and Environment, 2019, 42, 1615-1629.	2.8	8
6	Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. Journal of Cell Science, 2018, 131, .	1.2	27
7	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
8	Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Scientific Reports, 2017, 7, 1808.	1.6	30
9	Profiling New Small RNA Sequences. Methods in Molecular Biology, 2017, 1456, 177-188.	0.4	5
10	The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genetics, 2017, 13, e1007037.	1.5	21
11	<i>Arabidopsis</i> AtRRP44 has ribonuclease activity that is required to complement the growth defect of yeast <i>rrp44</i> Mutant. Plant Biotechnology, 2016, 33, 77-85.	0.5	6
12	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	1.5	60
13	Profiling and Characterization of Small RNAs in the Liverwort, <i>Marchantia polymorpha</i> , Belonging to the First Diverged Land Plants. Plant and Cell Physiology, 2016, 57, 359-372.	1.5	68
14	Diffuse Decapping Enzyme DCP2 Accumulates in DCP1 Foci Under Heat Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 107-115.	1.5	32
15	Recovery of <i>dicer-like 1</i> -late flowering phenotype by miR172 expressed by the noncanonical DCL4-dependent biogenesis pathway. Rna, 2014, 20, 1320-1327.	1.6	21
16	Localization of tobacco germin-like protein 1 in leaf intercellular space. Plant Physiology and Biochemistry, 2014, 85, 1-8.	2.8	6
17	Dual regulation of <i>ETTIN</i> (<i>ARF3</i>) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in <i>Arabidopsis</i> . Development (Cambridge), 2013, 140, 1958-1969.	1.2	91
18	Arabidopsis AtRRP44A Is the Functional Homolog of Rrp44/Dis3, an Exosome Component, Is Essential for Viability and Is Required for RNA Processing and Degradation. PLoS ONE, 2013, 8, e79219.	1.1	47

#	Article	IF	CITATIONS
19	Loss of XRN4 Function Can Trigger Cosuppression in a Sequence-Dependent Manner. Plant and Cell Physiology, 2012, 53, 1310-1321.	1.5	10
20	The role of decapping proteins in the miRNA accumulation in <i>Arabidopsis thaliana</i> . RNA Biology, 2012, 9, 644-652.	1.5	28
21	RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules. Plant and Cell Physiology, 2012, 53, 699-708.	1.5	64
22	miR165/166 and the development of land plants. Development Growth and Differentiation, 2012, 54, 93-99.	0.6	42
23	Production of Anti-Amyloid β Antibodies in Mice Fed Rice Expressing Amyloid β. Bioscience, Biotechnology and Biochemistry, 2011, 75, 396-400.	0.6	12
24	Overview of Plant RNAi. Methods in Molecular Biology, 2011, 744, 1-11.	0.4	12
25	Effect of rice-expressed amyloid β in the Tg2576 Alzheimer's disease transgenic mouse model. Vaccine, 2011, 29, 6252-6258.	1.7	18
26	Transgenic Rice Expressing Amyloid \hat{l}^2 -peptide for Oral Immunization. International Journal of Biological Sciences, 2011, 7, 301-307.	2.6	24
27	NIMAâ€related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 993-1005.	2.8	41
28	Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes To Cells, 2011, 16, 608-616.	0.5	40
29	Fabrication of 3-nm Platinum Wires Using a Tobacco Mosaic Virus Template. Chemistry Letters, 2010, 39, 616-618.	0.7	15
30	Cloning New Small RNA Sequences. Methods in Molecular Biology, 2010, 631, 123-138.	0.4	2
31	Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics, 2010, 11, 210.	1.2	179
32	Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling. PLoS Pathogens, 2010, 6, e1001011.	2.1	110
33	Reduction of amyloid \hat{l}^2 -peptide accumulation in Tg2576 transgenic mice by oral vaccination. Biochemical and Biophysical Research Communications, 2010, 399, 593-599.	1.0	20
34	Fabrication of Aligned Magnetic Nanoparticles Using Tobamoviruses. Nano Letters, 2010, 10, 773-776.	4.5	79
35	Processing of miRNA Precursors. Methods in Molecular Biology, 2010, 592, 231-241.	0.4	10
36	A dominant mutation in <i>DCL1</i> suppresses the <i>hyl1</i> mutant phenotype by promoting the processing of miRNA. Rna, 2009, 15, 450-458.	1.6	33

#	Article	IF	CITATIONS
37	SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6â€bodies. FEBS Letters, 2009, 583, 1261-1266.	1.3	147
38	Identification of <i>Caenorhabditis elegans</i> K02H8.1 (CeMBL), a functional ortholog of mammalian MBNL proteins. Journal of Neuroscience Research, 2009, 87, 1090-1097.	1.3	11
39	Overâ€expression of putative transcriptional coactivator KELP interferes with <i>Tomato mosaic virus </i> cellâ€ŧoâ€cell movement. Molecular Plant Pathology, 2009, 10, 161-173.	2.0	39
40	A NIMAâ€related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant Journal, 2008, 54, 829-844.	2.8	40
41	Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.	3.1	1,158
42	The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 2008, 49, 493-500.	1.5	464
43	In Vivo Analysis of Plant Nonsense-Mediated mRNA Decay. Methods in Enzymology, 2008, 449, 165-176.	0.4	5
44	Specific Enrichment of miRNAs in Arabidopsis thaliana Infected with Tobacco mosaic virus. DNA Research, 2007, 14, 227-233.	1.5	57
45	Improved Gateway Binary Vectors: High-Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2095-2100.	0.6	847
46	Binding of tobamovirus replication protein with small RNA duplexes. Journal of General Virology, 2007, 88, 2347-2352.	1.3	60
47	Context Analysis of Termination Codons in mRNA that are Recognized by Plant NMD. Plant and Cell Physiology, 2007, 48, 1072-1078.	1.5	76
48	Location of a Possible miRNA Processing Site in SmD3/SmB Nuclear Bodies in Arabidopsis. Plant and Cell Physiology, 2007, 48, 1243-1253.	1.5	145
49	1P332 Genetic modification of Tobacco Mosaic Virus for application in constructing electronic devices(Bioengineering,Poster Presentations). Seibutsu Butsuri, 2007, 47, S106.	0.0	0
50	Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine, 2007, 25, 6646-6654.	1.7	69
51	Characterization ofArabidopsisdecapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. FEBS Letters, 2007, 581, 2455-2459.	1.3	79
52	Effects of brefeldin A on the localization of Tobamovirus movement protein and cell-to-cell movement of the virus. Virology, 2007, 361, 133-140.	1.1	35
53	A virus-induced gene silencing approach for the suppression of nicotine content in Nicotiana benthamiana. Plant Biotechnology, 2007, 24, 295-300.	0.5	7
54	Detecting RNA/DNA Hybridization Using Double-Labeled Donor Probes With Enhanced Fluorescence Resonance Energy Transfer Signals. , 2006, 335, 43-56.		8

#	Article	IF	CITATIONS
55	In Planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system. Journal of Bioscience and Bioengineering, 2006, 101, 398-402.	1.1	23
56	A New <i>Tobamovirus</i> -resistance Gene, <i>Hk</i> , in <i>Capsicum annuum</i> . Journal of the Japanese Society for Horticultural Science, 2005, 74, 289-294.	0.4	12
57	UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant Journal, 2005, 43, 530-540.	2.8	125
58	klavier (klv), A novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant Journal, 2005, 44, 505-515.	2.8	114
59	Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. Journal of General Plant Pathology, 2005, 71, 8-22.	0.6	46
60	An extraction method for tobacco mosaic virus movement protein localizing in plasmodesmata. Protoplasma, 2005, 225, 85-92.	1.0	7
61	Activation of SIPK in response to UV-C irradiation: utility of a glutathione-S transferase-tagged plant MAP kinase by transient expression with agroinfiltration. Plant Biotechnology, 2005, 22, 7-12.	0.5	5
62	The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 2005, 12, 206-212.	1.6	413
63	Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the United States of America, 2004, 101, 6291-6296.	3.3	280
64	Expression of Amyloid-β1–40 and 1–42 Peptides in Capsicum annum var. angulosum for Oral Immunization. Assay and Drug Development Technologies, 2004, 2, 383-388.	0.6	9
65	From The Cover: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the United States of America, 2004, 101, 12753-12758.	3.3	889
66	Use of an Attenuated Strain of Tobamovirus for Early Detection of Virus-Induced Gene Silencing. Plant Biotechnology, 2004, 21, 135-142.	0.5	11
67	Expression of Amyloid-<1>β1–40 and 1–42 Peptides in<1> Capsicum annum var. angulosum for Oral Immunization. Assay and Drug Development Technologies, 2004, 2, 383-388.	0.6	3
68	A TMV-Cg mutant with a truncated coat protein induces cell death resembling the hypersensitive response in Arabidopsis. Molecules and Cells, 2004, 17, 334-9.	1.0	5
69	Cross-protection in Arabidopsis against crucifer tobamovirus Cg by an attenuated strain of the virus. Molecular Plant Pathology, 2003, 4, 259-269.	2.0	24
70	RNA Helicase Domain of Tobamovirus Replicase Executes Cell-to-Cell Movement Possibly through Collaboration with Its Nonconserved Region. Journal of Virology, 2003, 77, 12357-12362.	1.5	65
71	Establishment of a monoclonal antibody for human LXRalpha: Detection of LXRalpha protein expression in human macrophages. Nuclear Receptor, 2003, 1, 1.	10.0	24
72	ā,¦ā,≇f«ã,¹ãf™ã,¯ã,¿ãf¼ã«ã,^ã,<有ç‴é²ä¼åã®ç™°ç¾. Kagaku To Seibutsu, 2003, 41, 183-189.	0.0	0

#	Article	IF	CITATIONS
73	Defective Tobamovirus Movement Protein Lacking Wild-Type Phosphorylation Sites Can Be Complemented by Substitutions Found in Revertants. Journal of Virology, 2003, 77, 1452-1461.	1.5	27
74	Construction of a Tobamovirus Vector That Can Systemically Spread and Express Foreign Gene Products in Solanaceous Plants Plant Biotechnology, 2003, 20, 129-136.	0.5	11
75	Expression and purification of a neuropeptide nocistatin using two related plant viral vectors. Gene, 2002, 289, 69-79.	1.0	26
76	Tobamovirus Replicase Coding Region Is Involved in Cell-to-Cell Movement. Journal of Virology, 2001, 75, 8831-8836.	1.5	101
77	In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. Journal of General Virology, 2000, 81, 2095-2102.	1.3	43
78	Phosphorylation and/or Presence of Serine 37 in the Movement Protein of Tomato Mosaic Tobamovirus Is Essential for Intracellular Localization and Stability In Vivo. Journal of Virology, 1999, 73, 6831-6840.	1.5	85
79	The Movement Protein of Tomato Mosaic Tobamovirus Induces Tubular Structures in Tomato Protoplasts Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 612-615.	0.1	2
80	Application of the Human Hepatitis B Virus Core Antigen from Transgenic Tobacco Plants for Serological Diagnosis. Vox Sanguinis, 1998, 74, 148-155.	0.7	39
81	Characterization of a Pepper Mild Mottle Tobamovirus Strain Capable of Overcoming the L3 Gene-Mediated Resistance, Distinct from the Resistance-Breaking Italian Isolate. Molecular Plant-Microbe Interactions, 1998, 11, 327-331.	1.4	84
82	Application of the Human Hepatitis B Virus Core Antigen from Transgenic Tobacco Plants for Serological Diagnosis. Vox Sanguinis, 1998, 74, 148-155.	0.7	10
83	Identification of the TMV Replicase Sequence That Activates the N Gene-Mediated Hypersensitive Response. Molecular Plant-Microbe Interactions, 1997, 10, 709-715.	1.4	132
84	A Single Amino Acid Substitution in the Virus-Encoded Replicase of Tomato Mosaic Tobamovirus Alters Host Specificity. Molecular Plant-Microbe Interactions, 1997, 10, 1015-1018.	1.4	16
85	Nucleotide Sequence of the Japanese Isolate of Pepper Mild Mottle Tobamovirus (TMV-P) RNA Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1997, 63, 373-376.	0.1	38
86	Plant BioTechniques Series(5). Use of Green Fluorescent Protein as a Molecular Tag of Protein Movement In vivo Plant Biotechnology, 1997, 14, 127-130.	0.5	26
87	The complete sequence of a Singapore isolate of odontoglossum ringspot virus and comparison with other tobamoviruses. Gene, 1996, 171, 155-161.	1.0	37
88	Mapping of Host Range Restriction of the Rakkyo Strain of Tobacco Mosaic Virus inNicotiana tabacumcv. Bright Yellow. Virology, 1996, 226, 198-204.	1.1	21
89	Complete nucleotide sequence and synthesis of infectious in vitro transcripts from a full-length cDNA clone of a rakkyo strain of tobacco mosaic virus. Archives of Virology, 1996, 141, 885-900.	0.9	16
90	Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant Journal, 1996, 10, 1079-1088.	2.8	143

#	Article	IF	CITATIONS
91	Specific Detection of the Rakkyo Strain of Tobacco Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1996, 62, 513-516.	0.1	0
92	Systemic production of foreign peptides on the particle surface of tobacco mosaic virus. FEBS Letters, 1995, 359, 247-250.	1.3	93
93	Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Letters, 1995, 372, 165-168.	1.3	73
94	A New Tobacco Mosaic Virus Vector and its Use for the Systemic Production of Angiotensin-I-Converting Enzyme Inhibitor in Transgenic Tobacco and Tomato. Nature Biotechnology, 1993, 11, 930-932.	9.4	132
95	New Virus-Resistant Traits Endowed by Transgenes Radioisotopes, 1993, 42, 135-136.	0.1	0
96	Time Course Analysis of Immunolocalization of Coat Protein and Replicase Proteins in Protoplasts Inoculated with Tobacco Mosaic Virus Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1993, 59, 143-154.	0.1	1
97	In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Letters, 1992, 313, 181-184.	1.3	65
98	Cis-acting elements for in trans complementation of replication-defective mutant of tobacco mosaic virus. Virology, 1992, 191, 454-458.	1.1	15
99	Reinvestigation of intracellular localization of the 30K protein in tobacco protoplasts infected with tobacco mosaic virus RNA. Virology, 1992, 187, 809-813.	1.1	19
100	Isolation and analysis of cDNAs encoding small GTP-binding proteins of Arabidopsis thaliana. Gene, 1991, 108, 259-264.	1.0	61
101	Replication of TMV-L and Lta1 RNAs and their recombinants in TMV-resistant Tm-1 tomato protoplasts. Virology, 1991, 183, 99-105.	1.1	25
102	Trans complementation of virus-encoded replicase components of tobacco mosaic virus. Virology, 1991, 185, 580-584.	1.1	23
103	Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Letters, 1990, 269, 73-76.	1.3	59
104	Structure and Functions of Tobacco Mosaic Virus RNA. , 1990, , 23-38.		4
105	Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the Nâ \in^2 gene. Virology, 1989, 173, 11-20.	1.1	60
106	Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3′ noncoding regions. Virology, 1988, 164, 290-293.	1.1	49
107	Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, <i>Tm-1</i> . EMBO Journal, 1988, 7, 1575-1581.	3.5	158
108	Attenuated strains of tobacco mosaic virus. Journal of Molecular Biology, 1987, 194, 699-704.	2.0	61

#	Article	IF	CITATIONS
109	Characterization of Tm-1 gene action on replication of common isolates and a resistance-breaking isolate of TMV. Virology, 1987, 161, 527-532.	1.1	56
110	Infection of tobacco protoplasts with in vitro transcribed tobacco mosaic virus RNA using an improved electroporation method. FEBS Letters, 1987, 219, 65-69.	1.3	108
111	Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO Journal, 1987, 6, 2557-2563.	3.5	265
112	In Vitro viral RNA synthesis by a subcellular fraction of TMV-inoculated tobacco protoplasts. Virology, 1986, 149, 64-73.	1.1	35
113	Subcellular localization of the 30K protein in TMV-inoculated tobacco protoplasts. Virology, 1986, 152, 414-420.	1.1	25
114	Preparation of antibodies that react with the large non-structural proteins of tobacco mosaic virus by usingEscherichia coli expressed fragments. Molecular Genetics and Genomics, 1986, 205, 82-89.	2.4	16
115	Identification of the 30K protein of TMV by immunoprecipitation with antibodies directed against a synthetic peptide. Virology, 1984, 132, 71-78.	1.1	35
116	Synthesis of TMV-specific RNAs and proteins at the early stage of infection in tobacco protoplasts: Transient expression of the 30K protein and its mRNA. Virology, 1984, 133, 18-24.	1.1	124
117	The initiation site for transcription of the TMV 30-kDa protein messenger RNA. FEBS Letters, 1984, 173, 247-250.	1.3	36
118	Virus multiplication in tobacco protoplasts inoculated with tobacco mosaic virus rna encapsulated in large unilamellar vesicle liposomes. Virology, 1982, 120, 478-480.	1.1	52