Usha R Pendurthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5812223/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Factor VIIa suppresses inflammation and barrier disruption through the release of EEVs and transfer of microRNA 10a. Blood, 2022, 139, 118-133.	1.4	12
2	Selective inhibition of activated protein C anticoagulant activity protects against hemophilic arthropathy in mice. Blood, 2022, 139, 2830-2841.	1.4	6
3	Factor VIIa treatment increases circulating extracellular vesicles in hemophilia patients: Implications for the therapeutic hemostatic effect of FVIIa. Journal of Thrombosis and Haemostasis, 2022, 20, 1928-1933.	3.8	6
4	Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 250-265.	2.4	12
5	Factor VIIa induces extracellular vesicles from the endothelium: a potential mechanism for its hemostatic effect. Blood, 2021, 137, 3428-3442.	1.4	18
6	Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1987-2005.	2.4	10
7	SARS-CoV-2 infection induces the activation of tissue factor–mediated coagulation via activation of acid sphingomyelinase. Blood, 2021, 138, 344-349.	1.4	35
8	A critical role of endothelial cell protein C receptor in the intestinal homeostasis in experimental colitis. Scientific Reports, 2020, 10, 20569.	3.3	11
9	Therapeutic doses of recombinant factor VIIa in hemophilia generates thrombin in plateletâ€dependent and â€independent mechanisms. Journal of Thrombosis and Haemostasis, 2020, 18, 1911-1921.	3.8	7
10	FVIIa (Factor VIIa) Induces Biased Cytoprotective Signaling in Mice Through the Cleavage of PAR (Protease-Activated Receptor)-1 at Canonical Arg41 (Arginine41) Site. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1275-1288.	2.4	21
11	EPCR deficiency or function-blocking antibody protects against joint bleeding–induced pathology in hemophilia mice. Blood, 2020, 135, 2211-2223.	1.4	12
12	Acid sphingomyelinase plays a critical role in LPS- and cytokine-induced tissue factor procoagulant activity. Blood, 2019, 134, 645-655.	1.4	32
13	Increased Accumulation and Retention of rhFVIIa (eptacog beta) in Knee Joints of Hemophilia A Mice Compared to Wild-Type Mice. Thrombosis and Haemostasis, 2019, 119, 1283-1294.	3.4	6
14	Role of Cell Surface Lipids and Thiol-Disulphide Exchange Pathways in Regulating the Encryption and Decryption of Tissue Factor. Thrombosis and Haemostasis, 2019, 119, 860-870.	3.4	25
15	EPCR Deficiency Prevents Development of Hemophilic Arthropathy. Blood, 2019, 134, 159-159.	1.4	0
16	A Lipid Peroxidation Product, 4-Hydroxy-2-Nonenal, Triggers Intravascular Coagulation and Inflammation through Generation of Tissue Factor-Positive Microvesicles. Blood, 2019, 134, 2383-2383.	1.4	4
17	Endothelial cell protein C receptor-dependent signaling. Current Opinion in Hematology, 2018, 25, 219-226.	2.5	31
18	Factor VIIa induces anti-inflammatory signaling via EPCR and PAR1. Blood, 2018, 131, 2379-2392.	1.4	34

Usha R Pendurthi

#	Article	IF	CITATIONS
19	Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Advances, 2017, 1, 849-862.	5.2	30
20	Factor VIIa interaction with EPCR modulates the hemostatic effect of rFVIIa in hemophilia therapy: mode of its action. Blood Advances, 2017, 1, 1206-1214.	5.2	20
21	The lipid peroxidation product 4-hydroxy-2-nonenal induces tissue factor decryption via ROS generation and the thioredoxin system. Blood Advances, 2017, 1, 2399-2413.	5.2	25
22	Intrapleural Adenoviral-mediated Endothelial Cell Protein C Receptor Gene Transfer Suppresses the Progression of Malignant Pleural Mesothelioma in a Mouse Model. Scientific Reports, 2016, 6, 36829.	3.3	5
23	The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface. PLoS ONE, 2016, 11, e0158377.	2.5	30
24	Factor VIIa Interaction with Endothelial Cell Protein C Receptor: Its Role in Hemostatic Effect of rFVIIa in Treating Hemophilia. Blood, 2016, 128, 562-562.	1.4	0
25	Endothelial Cell Protein C Receptor Promotes Apoptosis in Malignant Pleural Mesothelioma Cells. Blood, 2015, 126, 2241-2241.	1.4	0
26	Role of Tissue Factor in Mycobacterium tuberculosis-Induced Inflammation and Disease Pathogenesis. PLoS ONE, 2014, 9, e114141.	2.5	20
27	Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood, 2014, 124, 1553-1562.	1.4	162
28	Blockade of endothelial cell protein C receptor augments factor VIIa hemostatic effect in hemophilia treatment. Blood, 2014, 124, 3031-3033.	1.4	12
29	Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor. PLoS ONE, 2014, 9, e103505.	2.5	18
30	Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor VIIa. PLoS ONE, 2013, 8, e59304.	2.5	18
31	Factor VIIa binding to endothelial cell protein C receptor: Differences between mouse and human systems. Thrombosis and Haemostasis, 2012, 107, 951-961.	3.4	24
32	Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood, 2011, 117, 3199-3208.	1.4	91
33	Endothelial cell protein C receptor cellular localization and trafficking: potential functional implications. Blood, 2009, 114, 1974-1986.	1.4	56
34	Endothelial Cell Protein C Receptor Acts as a Cellular Receptor for Factor VIIa on Endothelium. Journal of Biological Chemistry, 2007, 282, 11849-11857.	3.4	129
35	Tissue Factor–Factor VIIa Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 47-56.	2.4	170
36	Resveratrol, a Polyphenolic Compound Found in Wine, Inhibits Tissue Factor Expression in Vascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 419-426.	2.4	186

#	Article	IF	CITATIONS
37	Acidic and Basic Fibroblast Growth Factors Suppress Transcriptional Activation of Tissue Factor and Other Inflammatory Genes in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 940-946.	2.4	31