Liedewij Laan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5812204/publications.pdf

Version: 2024-02-01

		759233	677142
23	1,873	12	22
papers	citations	h-index	g-index
33	33	33	2267
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assembly dynamics of microtubules at molecular resolution. Nature, 2006, 442, 709-712.	27.8	531
2	Reconstitution of a microtubule plus-end tracking system in vitro. Nature, 2007, 450, 1100-1105.	27.8	457
3	Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters. Cell, 2012, 148, 502-514.	28.9	362
4	Force-generation and dynamic instability of microtubule bundles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8920-8925.	7.1	99
5	Global DNA Compaction in Stationary-Phase Bacteria Does Not Affect Transcription. Cell, 2018, 174, 1188-1199.e14.	28.9	81
6	Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. ELife, 2015, 4, .	6.0	63
7	End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle, 2012, 11, 3750-3757.	2.6	44
8	Positioning of microtubule organizing centers by cortical pushing and pulling forces. New Journal of Physics, 2012, 14, 105025.	2.9	40
9	General theory for the mechanics of confined microtubule asters. New Journal of Physics, 2014, 16, 013018.	2.9	32
10	Physical and Mathematical Modeling in Experimental Papers. Cell, 2015, 163, 1577-1583.	28.9	29
11	Minimal <i>in vitro</i> systems shed light on cell polarity. Journal of Cell Science, 2019, 132, .	2.0	22
12	Patterns of Conservation and Diversification in the Fungal Polarization Network. Genome Biology and Evolution, 2018, 10, 1765-1782.	2.5	15
13	In Vitro Assays to Study Force Generation at Dynamic Microtubule Ends. Methods in Cell Biology, 2010, 95, 617-639.	1.1	14
14	Direct visualization of superselective colloid-surface binding mediated by multivalent interactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
15	Reconstitution of Cortical Dynein Function. Methods in Enzymology, 2014, 540, 205-230.	1.0	12
16	Predicting Evolution Using Regulatory Architecture. Annual Review of Biophysics, 2020, 49, 181-197.	10.0	9
17	Spindle Dynamics Model Explains Chromosome Loss Rates in Yeast Polyploid Cells. Frontiers in Genetics, 2018, 9, 296.	2.3	7
18	Force Generation by Dynamic Microtubules In Vitro. Methods in Molecular Biology, 2011, 777, 147-165.	0.9	6

#	Article	IF	CITATIONS
19	Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends. Methods in Molecular Biology, 2017, 1486, 411-435.	0.9	5
20	Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophysical Reviews, 2017, 9, 375-387.	3.2	4
21	The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells, 2020, 9, 2534.	4.1	4
22	FORCE GENERATION BY MICROTUBULE BUNDLES. Biophysical Reviews and Letters, 2009, 04, 33-43.	0.8	1
23	Experiments inside a box lead to out-of-the-box ideas on cellular organization. Systems and Synthetic Biology, 2014, 8, 223-226.	1.0	0