Cecilia O'Kane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5812046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
2	Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine, 2015, 7, 303ra140.	5.8	142
3	<i>Mycobacterium tuberculosis</i> Up-Regulates Matrix Metalloproteinase-1 Secretion from Human Airway Epithelial Cells via a p38 MAPK Switch. Journal of Immunology, 2005, 175, 5333-5340.	0.4	115
4	Keratinocyte Growth Factor Promotes Epithelial Survival and Resolution in a Human Model of Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1520-1529.	2.5	96
5	Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. European Respiratory Journal, 2021, 58, 2002978.	3.1	94
6	Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 407-416.	2.5	91
7	Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Critical Care Medicine, 2009, 37, 2242-2249.	0.4	86
8	Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Critical Care, 2015, 19, 109.	2.5	85
9	Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax, 2018, 73, 723-730.	2.7	64
10	Monocyte-Dependent Fibroblast CXCL8 Secretion Occurs in Tuberculosis and Limits Survival of Mycobacteria within Macrophages. Journal of Immunology, 2007, 178, 3767-3776.	0.4	60
11	Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome. Journal of Immunology, 2015, 195, 87-95.	0.4	53
12	Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Medicine, 2020, 46, 2265-2283.	3.9	52
13	Emerging drugs for treating the acute respiratory distress syndrome. Expert Opinion on Emerging Drugs, 2019, 24, 29-41.	1.0	44
14	Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy — Achieving global consensus and visibility for cellular host-directed therapies. International Journal of Infectious Diseases, 2020, 96, 431-439.	1.5	43
15	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
16	Evolution of the Inflammatory and Fibroproliferative Responses during Resolution and Repair after Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2011, 115, 1022-1032.	1.3	36
17	Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB Journal, 2019, 33, 5585-5598.	0.2	34
18	IL4Rα Signaling Abrogates Hypoxic Neutrophil Survival and Limits Acute Lung Injury Responses <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2019, 200, 235-246.	2.5	33

CECILIA O'KANE

#	Article	IF	CITATIONS
19	Respiratory Infections Cause the Release of Extracellular Vesicles: Implications in Exacerbation of Asthma/COPD. PLoS ONE, 2014, 9, e101087.	1.1	31
20	Precision ut lung slices: A powerful ex vivo model to investigate respiratory infectious diseases. Molecular Microbiology, 2022, 117, 578-588.	1.2	29
21	Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Critical Care, 2018, 22, 268.	2.5	28
22	Keratinocyte growth factor in acute lung injury to reduce pulmonary dysfunction – a randomised placebo-controlled trial (KARE): study protocol. Trials, 2013, 14, 51.	0.7	26
23	Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials, 2020, 21, 462.	0.7	24
24	A Functional Variant of Elafin With Improved Anti-inflammatory Activity for Pulmonary Inflammation. Molecular Therapy, 2015, 23, 24-31.	3.7	20
25	Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial: study protocol for a randomized controlled trial. Trials, 2012, 13, 170.	0.7	19
26	Simvastatin decreases the level of heparin-binding protein in patients with acute lung injury. BMC Pulmonary Medicine, 2013, 13, 47.	0.8	17
27	A stepwise approach to justify phase III randomized clinical trials and enhance the likelihood of a positive result. Critical Care Medicine, 2010, 38, S523-S527.	0.4	16
28	A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the regulation of the inflammatory response in the lung. Thorax, 2015, 70, 426-432.	2.7	15
29	Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	5.7	13
30	Defining phenotypes and treatment effect heterogeneity to inform acute respiratory distress syndrome and sepsis trials: secondary analyses of three RCTs. Efficacy and Mechanism Evaluation, 2021, 8, 1-104.	0.9	11
31	Corticosteroids in acute respiratory distress syndrome: a step forward, but more evidence is needed. Lancet Respiratory Medicine,the, 2020, 8, 220-222.	5.2	9
32	Where next for cell-based therapy in ARDS. Thorax, 2019, 74, 13-15.	2.7	6
33	Comment on "Statin administration did not influence the progression of lung injury or associated organ failures in a cohort of patients with acute lung injuryâ€r Intensive Care Medicine, 2009, 35, 1494-1495.	3.9	5
34	Simvastatin to reduce pulmonary dysfunction in patients with acute respiratory distress syndrome: the HARP-2 RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-80.	0.9	5
35	Statins and Sepsis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 672-674.	2.5	4
36	Prevention of post-operative complications by using a HMG-CoA reductase inhibitor in patients undergoing one-lung ventilation for non-cardiac surgery: study protocol for a randomised controlled trial. Trials, 2018, 19, 690.	0.7	2

#	Article	IF	CITATIONS
37	Does MMP-12 Play a Role in Human Lung Fibrosis?. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 247-247.	1.4	1
38	Keratinocyte growth factor in acute lung injury—A work in progress*. Critical Care Medicine, 2009, 37, 1813-1814.	0.4	0
39	Reply to Letter. Annals of Surgery, 2015, 262, e95-e96.	2.1	0