Thucphuong Vo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5811507/publications.pdf

Version: 2024-02-01

76326 88630 5,441 87 40 70 citations h-index g-index papers 87 87 87 2354 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 2012, 62, 57-66.	6.7	329
2	A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Structures, 2017, 177, 196-219.	5.8	288
3	A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 904-940.	6.6	222
4	A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Applied Mathematical Modelling, 2013, 37, 3269-3281.	4.2	213
5	Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics, A/Solids, 2014, 45, 211-225.	3.7	208
6	Efficient machine learning models for prediction of concrete strengths. Construction and Building Materials, 2021, 266, 120950.	7.2	196
7	A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 2012, 54, 58-66.	5.0	194
8	Epoxy/graphene nanocomposites – processing and properties: a review. RSC Advances, 2015, 5, 73510-73524.	3.6	188
9	Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures, 2014, 64, 12-22.	5.3	180
10	Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Composites Part B: Engineering, 2015, 76, 273-285.	12.0	154
11	A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 2015, 119, 1-12.	5.8	148
12	A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Composites Part B: Engineering, 2014, 66, 233-246.	12.0	145
13	Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 2013, 55, 147-157.	12.0	132
14	Static behaviour of functionally graded sandwich beams using a quasi-3D theory. Composites Part B: Engineering, 2015, 68, 59-74.	12.0	119
15	Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica, 2014, 49, 155-168.	2.0	108
16	Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Composite Structures, 2015, 123, 337-349.	5.8	106
17	A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Composite Structures, 2013, 96, 376-383.	5.8	99
18	Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Computers and Structures, 2017, 190, 219-241.	4.4	98

#	Article	IF	Citations
19	Static behavior of composite beams using various refined shear deformation theories. Composite Structures, 2012, 94, 2513-2522.	5.8	95
20	An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Composite Structures, 2016, 156, 238-252.	5.8	83
21	Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions. Composites Part B: Engineering, 2018, 134, 225-245.	12.0	78
22	Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements. Composites Part B: Engineering, 2016, 107, 162-173.	12.0	72
23	An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 2016, 100, 152-163.	12.0	70
24	Vibration and buckling of composite beams using refined shear deformation theory. International Journal of Mechanical Sciences, 2012, 62, 67-76.	6.7	68
25	Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys. Composites Part B: Engineering, 2013, 44, 141-151.	12.0	68
26	Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Composites Part B: Engineering, 2018, 144, 171-183.	12.0	60
27	A quasi-3D hyperbolic shear deformation theory for functionally graded plates. Acta Mechanica, 2014, 225, 951-964.	2.1	58
28	Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-12.	2.7	58
29	Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Composite Structures, 2016, 154, 556-572.	5.8	56
30	Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm. Engineering Structures, 2021, 238, 112109.	5.3	55
31	Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory. Computers and Structures, 2017, 193, 110-127.	4.4	54
32	Trigonometric-series solution for analysis of laminated composite beams. Composite Structures, 2017, 160, 142-151.	5.8	51
33	Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories. Journal of Sandwich Structures and Materials, 2016, 18, 3-29.	3.5	50
34	Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach. Composite Structures, 2016, 156, 263-275.	5.8	49
35	Buckling analysis of thin-walled functionally graded sandwich box beams. Thin-Walled Structures, 2015, 86, 148-156.	5.3	47
36	Structural stability studies of graphene in sintered ceramic nanocomposites. Ceramics International, 2014, 40, 16227-16233.	4.8	45

#	Article	IF	Citations
37	Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 2017, 176, 1050-1060.	5.8	43
38	Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads. Composites Part B: Engineering, 2017, 124, 218-241.	12.0	43
39	Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory. Engineering Structures, 2017, 153, 598-612.	5. 3	43
40	A simple shear deformation theory for nonlocal beams. Composite Structures, 2018, 183, 262-270.	5.8	43
41	Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Composite Structures, 2020, 246, 112401.	5. 8	43
42	Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. Composite Structures, 2017, 176, 388-397.	5.8	42
43	Nonlinear buckling behaviours of thin-walled functionally graded open section beams. Composite Structures, 2016, 152, 829-839.	5 . 8	41
44	A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates. Steel and Composite Structures, 2015, 18, 91-120.	1.3	41
45	Free vibration of axially loaded rectangular composite beams using refined shear deformation theory. Composite Structures, 2012, 94, 3379-3387.	5.8	40
46	Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory. Composite Structures, 2017, 178, 406-414.	5.8	38
47	Vibration of cracked functionally graded microplates by the strain gradient theory and extended isogeometric analysis. Engineering Structures, 2019, 187, 251-266.	5. 3	37
48	A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Science and Technology, 2021, 111, 106550.	4.8	37
49	Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study. Journal of Composite Materials, 2013, 47, 2321-2330.	2.4	36
50	State-space Levy solution for size-dependent static, free vibration and buckling behaviours of functionally graded sandwich plates. Composites Part B: Engineering, 2018, 149, 144-164.	12.0	36
51	Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228, 2110-2131.	2.1	35
52	Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams. Composites Part B: Engineering, 2019, 166, 414-427.	12.0	34
53	Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model. Journal of Building Engineering, 2022, 52, 104302.	3.4	33
54	Explicit simulation of bolted endplate composite beam-to-CFST column connections. Thin-Walled Structures, 2017, 119, 749-759.	5. 3	32

#	Article	IF	Citations
55	A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Composite Structures, 2022, 282, 115095.	5.8	32
56	N,N-Dimethylformamide (DMF) Usage in Epoxy/Graphene Nanocomposites: Problems Associated with Reaggregation. Polymers, 2017, 9, 193.	4.5	31
57	Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeomertic analysis. Engineering Structures, 2017, 150, 905-917.	5. 3	31
58	A nonlocal sinusoidal plate model for micro/nanoscale plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228, 2652-2660.	2.1	30
59	Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Applied Mathematical Modelling, 2021, 91, 723-748.	4.2	30
60	Ritz-Based Analytical Solutions for Bending, Buckling and Vibration Behavior of Laminated Composite Beams. International Journal of Structural Stability and Dynamics, 2018, 18, 1850130.	2.4	25
61	Structural health monitoring capabilities in ceramic–carbon nanocomposites. Ceramics International, 2014, 40, 3793-3798.	4.8	24
62	A new simple shear deformation plate theory. Composite Structures, 2017, 171, 277-285.	5.8	24
63	Flexural behaviour of hardwood and softwood beams with mechanically connected GFRP plates. Composite Structures, 2018, 206, 610-620.	5.8	24
64	Heuristic algorithm-based semi-empirical formulas for estimating the compressive strength of the normal and high performance concrete. Construction and Building Materials, 2021, 304, 124467.	7.2	21
65	Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory. Archive of Applied Mechanics, 2013, 83, 605-622.	2.2	20
66	Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. Composite Structures, 2021, 264, 113739.	5.8	20
67	A Ritz type solution with exponential trial functions for laminated composite beams based on the modified couple stress theory. Composite Structures, 2018, 191, 154-167.	5.8	18
68	Postbuckling analysis of functionally graded nanoplates based on nonlocal theory and isogeometric analysis. Composite Structures, 2018, 201, 13-20.	5.8	18
69	Vibration and lateral buckling optimisation of thin-walled laminated composite channel-section beams. Composite Structures, 2016, 143, 84-92.	5.8	16
70	A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Composite Structures, 2021, 257, 113066.	5.8	16
71	Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation. Royal Society Open Science, 2017, 4, 170778.	2.4	14
72	Effects of surfactants on the properties of epoxy/graphene nanocomposites. Journal of Reinforced Plastics and Composites, 2018, 37, 960-967.	3.1	13

#	Article	IF	CITATIONS
73	An improved shear deformable theory for bending and buckling response of thin-walled FG sandwich I-beams resting on the elastic foundation. Composite Structures, 2020, 254, 112823.	5.8	12
74	A novel unified model for laminated composite beams. Composite Structures, 2020, 238, 111943.	5.8	12
75	Stochastic vibration and buckling analysis of functionally graded microplates with a unified higher-order shear deformation theory. Thin-Walled Structures, 2022, 177, 109473.	5.3	10
76	Bending, buckling and free vibration behaviors of thin-walled functionally graded sandwich and composite channel-section beams. Mechanics Based Design of Structures and Machines, 2023, 51, 932-960.	4.7	9
77	Dynamic stiffness formulation for a micro beam using Timoshenko–Ehrenfest and modified couple stress theories with applications. JVC/Journal of Vibration and Control, 2023, 29, 428-439.	2.6	9
78	Finite element formulation of metal foam microbeams via modified strain gradient theory. Engineering With Computers, 2023, 39, 751-772.	6.1	9
79	Review of Nonlinear Analysis and Modeling of Steel and Composite Structures. International Journal of Structural Stability and Dynamics, 2020, 20, 2030003.	2.4	8
80	Finite element model for free vibration analysis of curved zigzag nanobeams. Composite Structures, 2022, 282, 115097.	5.8	8
81	Deep Neural Networks for Form-Finding of Tensegrity Structures. Mathematics, 2022, 10, 1822.	2.2	7
82	A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates. Journal of Thermal Stresses, 0, , 1-21.	2.0	4
83	A shear-deformable beam model for stability analysis of orthotropic composite semi-rigid frames. Composite Structures, 2018, 189, 648-660.	5.8	3
84	Bending Analysis of Laminated Composite Beams Using Hybrid Shape Functions. Lecture Notes in Mechanical Engineering, 2018, , 503-517.	0.4	1
85	Free vibration of axially loaded zigzag and armchair nanobeams using doublet mechanics. Mechanics Based Design of Structures and Machines, 2023, 51, 5808-5833.	4.7	1
86	Comments on the article: "A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft coreâ€, by A. Chakrabarti, H. Chalak, M.A. Iqbal, A.H. Sheikh [Composite Structures 93 (2011) 271–279]. Composite Structures, 2012, 94, 2666.	5.8	0
87	Effects of design parameters on the static responses of two-way beam string structure. Mechanics Based Design of Structures and Machines, 0, , 1-19.	4.7	O