Brent R Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5810940/publications.pdf

Version: 2024-02-01

45 papers

3,852 citations

218677 26 h-index 276875 41 g-index

47 all docs

47 docs citations

47 times ranked

4462 citing authors

#	Article	IF	CITATIONS
1	New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo:Â Synthesis and Biological Applications. Journal of the American Chemical Society, 2002, 124, 6063-6076.	13.7	872
2	Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods, 2009, 6, 135-138.	19.0	441
3	Mammalian cell–based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nature Biotechnology, 2005, 23, 1308-1314.	17.5	394
4	Global profiling of dynamic protein palmitoylation. Nature Methods, 2012, 9, 84-89.	19.0	299
5	Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. Nature Chemical Biology, 2011, 7, 469-478.	8.0	209
6	Profiling Targets of the Irreversible Palmitoylation Inhibitor 2-Bromopalmitate. ACS Chemical Biology, 2013, 8, 1912-1917.	3.4	151
7	DHHC5 Protein Palmitoylates Flotillin-2 and Is Rapidly Degraded on Induction of Neuronal Differentiation in Cultured Cells. Journal of Biological Chemistry, 2012, 287, 523-530.	3.4	130
8	Confirming Target Engagement for Reversible Inhibitors in Vivo by Kinetically Tuned Activity-Based Probes. Journal of the American Chemical Society, 2012, 134, 10345-10348.	13.7	116
9	Protein depalmitoylases. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 83-98.	5.2	109
10	Global Analysis of Palmitoylated Proteins in Toxoplasma gondii. Cell Host and Microbe, 2015, 18, 501-511.	11.0	90
11	Dimethyl Itaconate Is Not Metabolized into Itaconate Intracellularly. Journal of Biological Chemistry, 2017, 292, 4766-4769.	3.4	80
12	APT2 Inhibition Restores Scribble Localization and S -Palmitoylation in Snail-Transformed Cells. Cell Chemical Biology, 2017, 24, 87-97.	5.2	69
13	Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling. Journal of the American Chemical Society, 2020, 142, 1801-1810.	13.7	69
14	Molecular Mechanism for Isoform-Selective Inhibition of Acyl Protein Thioesterases 1 and 2 (APT1 and) Tj ETQq0	0 g.rgBT /	Overlock 10 1
15	Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics. Analytical Chemistry, 2017, 89, 5669-5672.	6.5	66
16	Isoform-Specific PKA Dynamics Revealed by Dye-Triggered Aggregation and DAKAP1α-Mediated Localization in Living Cells. Chemistry and Biology, 2007, 14, 1031-1042.	6.0	48
17	Proteomic Analysis of S-Acylated Proteins in Human B Cells Reveals Palmitoylation of the Immune Regulators CD20 and CD23. PLoS ONE, 2012, 7, e37187.	2.5	47
18	Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications. Journal of the American Chemical Society, 2016, 138, 1852-1859.	13.7	45

#	Article	IF	CITATIONS
19	Temporal Profiling Establishes a Dynamic <i>S</i> -Palmitoylation Cycle. ACS Chemical Biology, 2018, 13, 1560-1568.	3.4	43
20	Fat Chance! Getting a Grip on a Slippery Modification. ACS Chemical Biology, 2013, 8, 46-57.	3.4	42
21	Dynamic Palmitoylation and the Role of DHHC Proteins in T Cell Activation and Anergy. Advances in Immunology, 2011, 109, 1-44.	2.2	40
22	A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death. Cell Chemical Biology, 2019, 26, 1716-1724.e9.	5.2	40
23	Correlated S-palmitoylation profiling of Snail-induced epithelial to mesenchymal transition. Molecular BioSystems, 2016, 12, 1799-1808.	2.9	37
24	A Mechanism Regulating G Protein-coupled Receptor Signaling That Requires Cycles of Protein Palmitoylation and Depalmitoylation. Journal of Biological Chemistry, 2014, 289, 6249-6257.	3.4	36
25	Acyl protein thioesterase inhibitors as probes of dynamic $\langle i \rangle S \langle i \rangle$ -palmitoylation. MedChemComm, 2014, 5, 268-276.	3.4	34
26	Profiling and inhibiting reversible palmitoylation. Current Opinion in Chemical Biology, 2013, 17, 20-26.	6.1	33
27	Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds. ACS Pharmacology and Translational Science, 2019, 2, 92-100.	4.9	28
28	Nonradioactive Analysis of Dynamic Protein Palmitoylation. Current Protocols in Protein Science, 2013, 73, 14.15.1-14.15.9.	2.8	26
29	Activated G Protein Gαs Samples Multiple Endomembrane Compartments. Journal of Biological Chemistry, 2016, 291, 20295-20302.	3.4	25
30	HDAC8 Substrates Identified by Genetically Encoded Active Site Photocrosslinking. Journal of the American Chemical Society, 2017, 139, 16222-16227.	13.7	25
31	Profiling Protein Sâ€Sulfination with Maleimideâ€Linked Probes. ChemBioChem, 2017, 18, 2028-2032.	2.6	23
32	Chemical approaches for profiling dynamic palmitoylation. Biochemical Society Transactions, 2013, 41, 43-49.	3.4	18
33	Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes. Molecular Pharmaceutics, 2015, 12, 3399-3407.	4.6	18
34	Strategies for profiling native <i>S</i> pâ€nitrosylation. Biopolymers, 2014, 101, 173-179.	2.4	13
35	DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics. Analytical Chemistry, 2018, 90, 8722-8726.	6.5	13
36	Free Radical Initiated Peptide Sequencing for Direct Site Localization of Sulfation and Phosphorylation with Negative Ion Mode Mass Spectrometry. Analytical Chemistry, 2018, 90, 9682-9686.	6.5	12

#	Article	IF	CITATIONS
37	Chemoselective ratiometric imaging of protein S-sulfenylation. Chemical Communications, 2017, 53, 7385-7388.	4.1	11
38	Affinity-Based Selectivity Profiling of an In-Class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2. ACS Medicinal Chemistry Letters, 2017, 8, 215-220.	2.8	10
39	Scribble sub-cellular localization modulates recruitment of YES1 to regulate YAP1 phosphorylation. Cell Chemical Biology, 2021, 28, 1235-1241.e5.	5 . 2	10
40	Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry. Analytical Chemistry, 2017, 89, 8304-8310.	6.5	9
41	The next frontier of postâ€translational modifications. Biopolymers, 2014, 101, 131-132.	2.4	0
42	Trail-blAlZin new directions for conditional proteomics. Nature Methods, 2016, 13, 917-918.	19.0	0
43	Enrichment of S-Palmitoylated Proteins for Mass Spectrometry Analysis. Methods in Molecular Biology, 2019, 2009, 71-79.	0.9	0
44	Proteomic Profiling of Dynamic Palmitoylation. FASEB Journal, 2008, 22, 651.9.	0.5	0
45	Quantitative Chemical Proteomics of Dynamic Palmitoylation. FASEB Journal, 2010, 24, 905.3.	0.5	0