Changho Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5810463/publications.pdf

Version: 2024-02-01

		218592	189801	
57	2,596	26	50	
papers	citations	h-index	g-index	
57	57	57	3534	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Optimization of spectrally selective 180° radiofrequency pulse timings in Jâ€difference editing (MEGA) of lactate. Magnetic Resonance in Medicine, 2022, 87, 1150-1164.	1.9	2
2	Shimmingâ€"the forgotten child of in-vivo MR?. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 179-181.	1.1	1
3	BIMG-09. GLUTAMINE AND GLYCINE BY MR SPECTROSCOPY IDENTIFY AGGRESSIVE GLIOMAS. Neuro-Oncology Advances, 2021, 3, i2-i3.	0.4	O
4	Spectral fitting strategy to overcome the overlap between 2â€hydroxyglutarate and lipid resonances at 2.25 ppm. Magnetic Resonance in Medicine, 2021, 86, 1818-1828.	1.9	7
5	Preoperative imaging of glioblastoma patients using hyperpolarized 13C pyruvate: Potential role in clinical decision making. Neuro-Oncology Advances, 2021, 3, vdab092.	0.4	9
6	NIMG-29. ELEVATION OF GLUTAMINE AND CITRATE BY MR SPECTROSCOPY IS AN IMAGING BIOMARKER OF RAPID CELL PROLIFERATION IN GLIOMAS. Neuro-Oncology, 2021, 23, vi135-vi135.	0.6	0
7	Magnetic Resonance Spectroscopic Assessment of Isocitrate Dehydrogenase Status inÂGliomas: The New Frontiers of Spectrobiopsy in Neurodiagnostics. World Neurosurgery, 2020, 133, e421-e427.	0.7	16
8	Brief mindfulness training increased glutamate metabolism in the anterior cingulate cortex. NeuroReport, 2020, 31, 1142-1145.	0.6	10
9	Glycine by MR spectroscopy is an imaging biomarker of glioma aggressiveness. Neuro-Oncology, 2020, 22, 1018-1029.	0.6	37
10	Spectroscopic markers of neurodegeneration in the mesial prefrontal cortex predict survival in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 246-251.	1.1	6
11	In vivo MRS measurement of 2â€hydroxyglutarate in patientâ€derived IDHâ€mutant xenograft mouse models versus glioma patients. Magnetic Resonance in Medicine, 2020, 84, 1152-1160.	1.9	11
12	NIMG-24. GLYCINE AND GLUTAMINE BY MR SPECTROSCOPY ARE IMAGING BIOMARKERS OF GLIOMA AGGRESSIVENESS. Neuro-Oncology, 2020, 22, ii152-ii152.	0.6	0
13	False-Positive Measurement at 2-Hydroxyglutarate MR Spectroscopy in Isocitrate Dehydrogenase Wild-Type Glioblastoma: A Multifactorial Analysis. Radiology, 2019, 291, 752-762.	3.6	28
14	ACTR-66. A PHASE 1, OPEN-LABEL, PERIOPERATIVE STUDY OF IVOSIDENIB (AG-120) AND VORASIDENIB (AG-881) IN RECURRENT IDH1 MUTANT, LOW-GRADE GLIOMA: UPDATED RESULTS. Neuro-Oncology, 2019, 21, vi28-vi29.	0.6	17
15	NIMG-13. GLYCINE IS A METABOLIC BIOMARKER OF MALIGNANCY IN GLIOMAS: IN VIVO MAGNETIC RESONANCE SPECTROSCOPY STUDY. Neuro-Oncology, 2019, 21, vi164-vi164.	0.6	O
16	NIMG-08. 2-HYDROXYGLUTARATE MAGNETIC RESONANCE SPECTROSCOPY IN BRAINSTEM TUMOR PATIENTS IN VIVO. Neuro-Oncology, 2019, 21, vi163-vi163.	0.6	0
17	3D highâ€resolution imaging of 2â€hydroxyglutarate in glioma patients using DRAGâ€EPSI at 3T in vivo. Magnetic Resonance in Medicine, 2019, 81, 795-802.	1.9	9
18	A randomized, double-blind, placebo-controlled trial of lamotrigine for prescription corticosteroid effects on the human hippocampus. European Neuropsychopharmacology, 2019, 29, 376-383.	0.3	5

#	Article	IF	CITATIONS
19	Distinction of the <scp>GABA</scp> 2.29 ppm resonance using triple refocusing at 3 <scp>T</scp> in vivo. Magnetic Resonance in Medicine, 2018, 80, 1307-1319.	1.9	6
20	Spectrobiopsy in neurodiagnostics: the new era. Neuroradiology, 2018, 60, 129-131.	1.1	7
21	Noninvasive assessment of isocitrate dehydrogenase mutation status in cerebral gliomas by magnetic resonance spectroscopy in a clinical setting. Journal of Neurosurgery, 2018, 128, 391-398.	0.9	62
22	Echoâ€planar spectroscopic imaging with dualâ€readout alternated gradients (DRAGâ€EPSI) at 7 T: Application for 2â€hydroxyglutarate imaging in glioma patients. Magnetic Resonance in Medicine, 2018, 79, 1851-1861.	1.9	30
23	RBTT-03. A PHASE 1, MULTICENTER, RANDOMIZED, OPEN-LABEL, PERIOPERATIVE STUDY OF AG-120 (IVOSIDENIB) AND AG-881 IN PATIENTS WITH RECURRENT, NONENHANCING, IDH1-MUTANT, LOW-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi234-vi234.	0.6	4
24	Magnetic Resonance Spectroscopy, Positron Emission Tomography and Radiogenomics—Relevance to Glioma. Frontiers in Neurology, 2018, 9, 33.	1.1	32
25	In vivo detection of 2â€hydroxyglutarate in brain tumors by optimized pointâ€resolved spectroscopy (PRESS) at 7T. Magnetic Resonance in Medicine, 2017, 77, 936-944.	1.9	40
26	Measurement of glycine in healthy and tumorous brain by tripleâ€refocusing MRS at 3ÂT <i>in vivo</i> NMR in Biomedicine, 2017, 30, e3747.	1.6	9
27	Detection of 2â€hydroxyglutarate in brain tumors by tripleâ€refocusing MR spectroscopy at 3T in vivo. Magnetic Resonance in Medicine, 2017, 78, 40-48.	1.9	28
28	Prospective Longitudinal Analysis of 2-Hydroxyglutarate Magnetic Resonance Spectroscopy Identifies Broad Clinical Utility for the Management of Patients With $\langle i \rangle IDH \langle i \rangle$ -Mutant Glioma. Journal of Clinical Oncology, 2016, 34, 4030-4039.	0.8	157
29	In vivo ¹ <scp>H</scp> <scp>MRSI</scp> of glycine in brain tumors at 3 <scp>T</scp> . Magnetic Resonance in Medicine, 2016, 75, 52-62.	1.9	16
30	Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro-Oncology, 2016, 18, 283-290.	0.6	161
31	¹ H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors. NMR in Biomedicine, 2015, 28, 108-115.	1.6	10
32	Proton T ₂ measurement and quantification of lactate in brain tumors by MRS at 3 Tesla in vivo. Magnetic Resonance in Medicine, 2015, 73, 2094-2099.	1.9	40
33	Measurement of regional variation of GABA in the human brain by optimized pointâ€resolved spectroscopy at 7 T <i>in vivo</i> . NMR in Biomedicine, 2014, 27, 1167-1175.	1.6	30
34	In vivo detection of citrate in brain tumors by $\sup 1 < \sup H$ magnetic resonance spectroscopy at 3T. Magnetic Resonance in Medicine, 2014, 72, 316-323.	1.9	12
35	<i>In vivo T</i> ₂ relaxation time measurement with echoâ€time averaging. NMR in Biomedicine, 2014, 27, 863-869.	1.6	7
36	A comparative study of short―and longâ€TE ¹ H MRS at 3 T for <i>in vivo</i> detection of 2â€hydroxyglutarate in brain tumors. NMR in Biomedicine, 2013, 26, 1242-1250.	1.6	73

#	Article	IF	Citations
37	Compressive Sensing Could Accelerate < sup > 1 < / sup > H MR Metabolic Imaging in the Clinic. Radiology, 2012, 262, 985-994.	3.6	53
38	2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nature Medicine, 2012, 18, 624-629.	15.2	711
39	Measurement of glycine in gray and white matter in the human brain in vivo by ¹ H MRS at 7.0 T. Magnetic Resonance in Medicine, 2012, 68, 325-331.	1.9	18
40	T ₂ measurement of Jâ€coupled metabolites in the human brain at 3T. NMR in Biomedicine, 2012, 25, 523-529.	1.6	72
41	Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR in Biomedicine, 2012, 25, 1177-1186.	1.6	66
42	Metabolism of [Uâ€∢sup>13C]glucose in human brain tumors <i>in vivo</i> . NMR in Biomedicine, 2012, 25, 1234-1244.	1.6	282
43	Phaseâ€adjusted echo time (PATE)â€averaging ¹ H MRS: application for improved glutamine quantification at 2.89 T. NMR in Biomedicine, 2012, 25, 1245-1252.	1.6	18
44	Enhanced neurochemical profile of the rat brain using in vivo $\sup 1< \sup H$ NMR spectroscopy at 16.4 T. Magnetic Resonance in Medicine, 2011, 65, 28-34.	1.9	22
45	Measurement of glycine in the human brain in vivo by ¹ Hâ€MRS at 3 T: application in brain tumors. Magnetic Resonance in Medicine, 2011, 66, 609-618.	1.9	44
46	Improvement of resolution for brain coupled metabolites by optimized ¹ H MRS at 7 T. NMR in Biomedicine, 2010, 23, 1044-1052.	1.6	70
47	Measurement of <i>N</i> à€acetylaspartylglutamate in the human frontal brain by ¹ Hâ€MRS at 7 T. Magnetic Resonance in Medicine, 2010, 64, 1247-1251.	1.9	43
48	In vivo detection of serine in the human brain by proton magnetic resonance spectroscopy (¹ Hâ€MRS) at 7 Tesla. Magnetic Resonance in Medicine, 2009, 62, 1042-1046.	1.9	27
49	Measurement of glycine in human prefrontal brain by pointâ€resolved spectroscopy at 7.0 tesla in vivo. Magnetic Resonance in Medicine, 2009, 62, 1305-1310.	1.9	15
50	Measurement of glutathione in human brain at 3T using an improved double quantum filter in vivo. Journal of Magnetic Resonance, 2009, 198, 160-166.	1.2	14
51	Measurement of glycine in human brain by triple refocusing ¹ Hâ€MRS in vivo at 3.0T. Magnetic Resonance in Medicine, 2008, 59, 59-64.	1.9	32
52	Measurement of GABA and contaminants in gray and white matter in human brain in vivo. Magnetic Resonance in Medicine, 2007, 58, 27-33.	1.9	35
53	Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magnetic Resonance in Medicine, 2006, 55, 997-1005.	1.9	51
54	Proton spectral editing for discrimination of lactate and threonine 1.31 ppm resonances in human brain in vivo. Magnetic Resonance in Medicine, 2006, 56, 660-665.	1.9	29

#	Article	IF	CITATIONS
55	T2 measurement and quantification of glutamate in human brain in vivo. Magnetic Resonance in Medicine, 2006, 56, 971-977.	1.9	77
56	Brain \hat{I}^3 -aminobutyric acid measurement by proton double-quantum filtering with selective) rewinding. Magnetic Resonance in Medicine, 2005, 54, 272-279.	1.9	29
57	Detection of themyo-inositol 4.06-ppm resonance by selectiveJ rewinding: Application to human prefrontal cortex in vivo. Magnetic Resonance in Medicine, 2005, 54, 1536-1540.	1.9	6