Natalia N Nalivaeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5810024/publications.pdf

Version: 2024-02-01

201385 189595 2,681 63 27 50 citations h-index g-index papers 63 63 63 3525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Letters, 2013, 587, 2046-2054.	1.3	196
2	The Transcriptionally Active Amyloid Precursor Protein (APP) Intracellular Domain Is Preferentially Produced from the 695 Isoform of APP in a β-Secretase-dependent Pathway. Journal of Biological Chemistry, 2010, 285, 41443-41454.	1.6	175
3	Lipid Rafts and Alzheimer's Disease: Protein-Lipid Interactions and Perturbation of Signaling. Frontiers in Physiology, 2012, 3, 189.	1.3	161
4	Are amyloidâ€degrading enzymes viable therapeutic targets in Alzheimer's disease?. Journal of Neurochemistry, 2012, 120, 167-185.	2.1	161
5	Amyloid-Degrading Enzymes as Therapeutic Targets in Alzheimers Disease. Current Alzheimer Research, 2008, 5, 212-224.	0.7	159
6	Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Reports, 2009, 10, 94-100.	2.0	151
7	Targeting amyloid clearance in Alzheimer's disease as a therapeutic strategy. British Journal of Pharmacology, 2019, 176, 3447-3463.	2.7	115
8	Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 825.	1.4	110
9	Effects of Hypoxia and Oxidative Stress on Expression of Neprilysin in Human Neuroblastoma Cells and Rat Cortical Neurones and Astrocytes. Neurochemical Research, 2007, 32, 1741-1748.	1.6	103
10	Neprilysin expression and functions in development, ageing and disease. Mechanisms of Ageing and Development, 2020, 192, 111363.	2.2	89
11	Effect of Hypoxia/Ischemia and Hypoxic Preconditioning/Reperfusion on Expression of Some Amyloid-Degrading Enzymes. Annals of the New York Academy of Sciences, 2004, 1035, 21-33.	1.8	88
12	Sodium valproate: an old drug with new roles. Trends in Pharmacological Sciences, 2009, 30, 509-514.	4.0	88
13	Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimerââ,¬â"¢s disease. Frontiers in Aging Neuroscience, 2014, 6, 235.	1.7	88
14	Post-translational modifications of proteins: Acetylcholinesterase as a model system. Proteomics, 2001, 1, 735-747.	1.3	83
15	Targeting Amyloid-Degrading Enzymes as Therapeutic Strategies in Neurodegeneration. Annals of the New York Academy of Sciences, 2004, 1035, 1-20.	1.8	7 3
16	Nuclear signalling by membrane protein intracellular domains: The AICD enigma. Cellular Signalling, 2012, 24, 402-409.	1.7	71
17	Effect of Sodium Valproate Administration on Brain Neprilysin Expression and Memory in Rats. Journal of Molecular Neuroscience, 2012, 46, 569-577.	1.1	71
18	New Insights into the Roles of Metalloproteinases in Neurodegeneration and Neuroprotection. International Review of Neurobiology, 2007, 82, 113-135.	0.9	64

#	Article	IF	Citations
19	The Aβâ€clearance protein transthyretin, like neprilysin, is epigenetically regulated by the amyloid precursor protein intracellular domain. Journal of Neurochemistry, 2014, 130, 419-431.	2.1	64
20	AChE and the amyloid precursor protein (APP) – Cross-talk in Alzheimer's disease. Chemico-Biological Interactions, 2016, 259, 301-306.	1.7	45
21	From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. Journal of Neurochemistry, 2013, 126, 183-190.	2.1	44
22	Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism. Frontiers in Neuroscience, 2015, 9, 426.	1.4	43
23	Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats. Neuroscience Letters, 2007, 417, 234-239.	1.0	36
24	Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. Journal of Neurochemistry, 2011, 116, 742-746.	2.1	36
25	Involvement of the hypothalamic-pituitary-adrenal axis in the antidepressant-like effects of mild hypoxic preconditioning in rats. Psychoneuroendocrinology, 2007, 32, 813-823.	1.3	34
26	Effects of ageing and experimental diabetes on insulin-degrading enzymeÂexpressionÂin male rat tissues. Biogerontology, 2015, 16, 473-484.	2.0	32
27	Role of Ageing and Oxidative Stress in Regulation of Amyloid-Degrading Enzymes and Development of Neurodegeneration. Current Aging Science, 2017, 10, 32-40.	0.4	29
28	ACTIVATION OF NEUTRAL SPHINGOMYELINASE BY IL-1 $\hat{1}^2$ REQUIRES THE TYPE 1 INTERLEUKIN 1 RECEPTOR. Cytokine, 2000, 12, 229-232.	1.4	26
29	New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes. Neurochemical Research, 2016, 41, 620-630.	1.6	20
30	Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation. Peptides, 2022, 151, 170766.	1.2	20
31	The Amyloid Precursor Protein Represses Expression of Acetylcholinesterase in Neuronal Cell Lines. Journal of Biological Chemistry, 2013, 288, 26039-26051.	1.6	19
32	Effects of prenatal hypoxia on expression of amyloid precursor protein and metallopeptidases in the rat brain. International Journal of Peptide Research and Therapeutics, 2003, 10, 455-462.	0.1	17
33	Differential expression of ADAM15 and ADAM17 metalloproteases in the rat brain after severe hypobaric hypoxia and hypoxic preconditioning. Neuroscience Research, 2012, 72, 364-373.	1.0	17
34	Characterisation of acetylcholinesterase release from neuronal cells. Chemico-Biological Interactions, 2013, 203, 302-308.	1.7	15
35	Editorial: Brain Hypoxia and Ischemia: New Insights Into Neurodegeneration and Neuroprotection. Frontiers in Neuroscience, 2019, 13, 770.	1.4	14
36	Co-localization of PRiMA with acetylcholinesterase in cholinergic neurons of rat brain: An immunocytochemical study. Brain Research, 2010, 1344, 34-42.	1.1	13

#	Article	IF	Citations
37	Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. International Journal of Molecular Sciences, 2021, 22, 7982.	1.8	13
38	Developmental Profile of Brain Neprilysin Expression Correlates with Olfactory Behaviour of Rats. Journal of Molecular Neuroscience, 2021, 71, 1772-1785.	1.1	10
39	Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia. Nutrients, 2022, 14, 1399.	1.7	9
40	Mediator: the missing link in amyloid precursor protein nuclear signalling. EMBO Reports, 2011, 12, 180-181.	2.0	8
41	Neprilysin. , 2013, , 612-619.		8
42	Regulation of endothelin-converting enzyme-1 expression in human neuroblastoma cells. Experimental Biology and Medicine, 2006, 231, 1048-53.	1.1	8
43	Does acetylcholinesterase secretion involve an ADAMs-like metallosecretase?. International Journal of Peptide Research and Therapeutics, 1999, 6, 343-348.	0.1	6
44	Effect of hypoxia on cholinesterase activity in rat sensorimotor cortex. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 107-116.	0.2	6
45	Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. Biochemistry (Moscow), 2021, 86, 680-692.	0.7	6
46	Changes in the Activity of Amyloid-Degrading Metallopeptidases Leads to Disruption of Memory in Rats. Neuroscience and Behavioral Physiology, 2010, 40, 975-980.	0.2	5
47	Age-Dependent Electrocorticogram Dynamics and Epileptogenic Responsiveness in Rats Subjected to Prenatal Hypoxia. Developmental Neuroscience, 2019, 41, 56-66.	1.0	5
48	Peptide Degradation (Neprilysin and Other Regulatory Peptidases)., 2013,, 1757-1764.		4
49	Reflections on 60Âyears of publication of the Journal of Neurochemistry. Journal of Neurochemistry, 2016, 139, 7-16.	2.1	4
50	Ontogenetic and Phylogenetic Approaches for Studying the Mechanisms of Cognitive Dysfunctions. , 2018, , .		4
51	Effects of geroprotective peptides on the activity of cholinesterases and formation of the soluble form of the amyloid precursor protein in human neuroblastoma SH-SY5Y cells. Neurochemical Journal, 2011, 5, 176-182.	0.2	3
52	Involvement of the sphingomyelinin pathway in interleukin 1 signalling in murine immunocompetent and nerve cells. Immunology Letters, 1997, 56, 67.	1.1	2
53	Effects of prenatal hypoxia on expression of amyloid precursor protein and metallopeptidases in the rat brain. International Journal of Peptide Research and Therapeutics, 2003, 10, 455-462.	0.9	2
54	Post-translational modifications of proteins: Acetylcholinesterase as a model system., 2001, 1, 735.		2

#	Article	IF	CITATIONS
55	The Fourth ISN Special Neurochemistry Conference -"Membrane domains in CNS Physiology and Pathologyâ€, Erice, Trapani, Sicily, 22-26 May 2010. Journal of Neurochemistry, 2011, 116, 669-670.	2.1	1
56	Role of amyloid precursor protein (APP) in regulation of neuronal genes. SpringerPlus, 2015, 4, L40.	1.2	1
57	Role of caspase-3 in development of neuronal plasticity and memory. SpringerPlus, 2015, 4, .	1.2	1
58	Molecular Mechanisms of Cognitive Impairment and Intellectual Disabilityâ€"Virtual ESN Mini-Conference in Conjunction with the FENS Forum, July 11â€"15, 2020. Journal of Molecular Neuroscience, 2020, 70, 1927-1933.	1.1	1
59	Metalloproteases and Proteolytic Processing. , 2011, , 457-482.		1
60	Caspase Inhibition Restores NEP Expression and Rescues Olfactory Deficit in Rats Caused by Prenatal Hypoxia. Journal of Molecular Neuroscience, 2022, , $1.$	1.1	1
61	Does acetylcholinesterase secretion involve an ADAMs-like metallosecretase?. International Journal of Peptide Research and Therapeutics, 1999, 6, 343-348.	0.1	0
62	Prenatal hypoxia affects amyloid metabolism and formation of cognitive functions in postnatal ontogenesis of rats. International Journal of Psychophysiology, 2008, 69, 156.	0.5	0
63	Special Issue in Honour of Anthony J (Tony) Turner. Neurochemical Research, 2019, 44, 1269-1270.	1.6	О