Philippe Ricaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new tropospheric and stratospheric Chemistry and Transport Model MOCACE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes. Atmospheric Chemistry and Physics, 2007, 7, 5815-5860.	4.9	107
2	CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 2569-2594.	4.9	107
3	Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83, 529-554.	2.3	82
4	MaÃ⁻do observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements. Atmospheric Measurement Techniques, 2013, 6, 2865-2877.	3.1	74
5	Impact of land convection on troposphere-stratosphere exchange in the tropics. Atmospheric Chemistry and Physics, 2007, 7, 5639-5657.	4.9	65
6	Midlatitude stratosphere – troposphere exchange as diagnosed by MLS O ₃ and MOPITT CO assimilated fields. Atmospheric Chemistry and Physics, 2010, 10, 2175-2194.	4.9	54
7	Atmospheric pollution over the eastern Mediterranean during summer – aÂreview. Atmospheric Chemistry and Physics, 2017, 17, 13233-13263.	4.9	49
8	Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: implications for transport processes. Atmospheric Chemistry and Physics, 2009, 9, 3947-3956.	4.9	39
9	Ozone loss in the 2002–2003 Arctic vortex deduced from the assimilation of Odin/SMR O ₃ and N ₂ O measurements: N ₂ O as a dynamical tracer. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 217-228.	2.7	37
10	A thermal infrared instrument onboard a geostationary platform for CO and O ₃ measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE). Atmospheric Measurement Techniques, 2011, 4, 1637-1661.	3.1	36
11	Climatology of pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009. Atmospheric Chemistry and Physics, 2013, 13, 12363-12388.	4.9	36
12	New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale. Atmospheric Chemistry and Physics, 2016, 16, 8249-8264.	4.9	36
13	Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin. Atmospheric Chemistry and Physics, 2014, 14, 11427-11446.	4.9	26
14	Site testing for submillimetre astronomy at Dome C, Antarctica. Astronomy and Astrophysics, 2011, 535, A112.	5.1	25
15	The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality. Atmospheric Measurement Techniques, 2014, 7, 2185-2201.	3.1	23
16	Equatorial transport as diagnosed from nitrous oxide variability. Atmospheric Chemistry and Physics, 2009, 9, 8173-8188.	4.9	22
17	HAMSTRAD-Tropo, A 183-GHz Radiometer Dedicated to Sound Tropospheric Water Vapor Over Concordia Station, Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 1365-1380.	6.3	22
18	A geostationary thermal infrared sensor to monitor the lowermost troposphere: O ₃ and CO retrieval studies. Atmospheric Measurement Techniques, 2011, 4, 297-317.	3.1	22

Philippe Ricaud

#	Article	IF	CITATIONS
19	Intercontinental transport of biomass burning pollutants over the Mediterranean Basin during the summer 2014 ChArMEx-GLAM airborne campaign. Atmospheric Chemistry and Physics, 2018, 18, 6887-6906.	4.9	21
20	A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation. Atmospheric Chemistry and Physics, 2010, 10, 6097-6115.	4.9	20
21	Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry. Atmospheric Chemistry and Physics, 2013, 13, 10027-10048.	4.9	19
22	Genesis of diamond dust, ice fog and thick cloud episodes observed and modelled above Dome C, Antarctica. Atmospheric Chemistry and Physics, 2017, 17, 5221-5237.	4.9	19
23	An overview of the HIBISCUS campaign. Atmospheric Chemistry and Physics, 2011, 11, 2309-2339.	4.9	18
24	Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antarctica, 2009–14. Antarctic Science, 2015, 27, 598-616.	0.9	17
25	Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica. Atmospheric Chemistry and Physics, 2020, 20, 4167-4191.	4.9	17
26	Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts. Atmospheric Chemistry and Physics, 2017, 17, 1081-1103.	4.9	16
27	Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica. Boundary-Layer Meteorology, 2012, 143, 227-259.	2.3	15
28	The GLAM Airborne Campaign across the Mediterranean Basin. Bulletin of the American Meteorological Society, 2018, 99, 361-380.	3.3	15
29	Impact of synthetic space-borne NO ₂ observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO ₂ analyses. Atmospheric Chemistry and Physics, 2019, 19, 12811-12833.	4.9	15
30	Introduction to the MaÃ ⁻ do Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. Journal of Applied Remote Sensing, 2015, 9, 094099.	1.3	13
31	Impact of tropical land convection on the water vapour budget in the tropical tropopause layer. Atmospheric Chemistry and Physics, 2014, 14, 6195-6211.	4.9	12
32	Future changes in surface ozone over the Mediterranean Basin in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx). Atmospheric Chemistry and Physics, 2018, 18, 9351-9373.	4.9	12
33	Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmospheric Measurement Techniques, 2020, 13, 131-152.	3.1	12
34	A 22-GHz Mobile Microwave Radiometer (MobRa) for the Study of Middle Atmospheric Water Vapor. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 3104-3114.	6.3	11
35	Validation of Tropospheric Water Vapor as Measured by the 183-GHz HAMSTRAD Radiometer Over the Pyrenees Mountains, France. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2189-2203.	6.3	11
36	Validation of nine years of MOPITT V5 NIR using MOZAIC/IAGOS measurements: biases and long-term stability. Atmospheric Measurement Techniques, 2014, 7, 3783-3799.	3.1	11

Philippe Ricaud

#	Article	IF	CITATIONS
37	Quality Assessment of the First Measurements of Tropospheric Water Vapor and Temperature by the HAMSTRAD Radiometer Over Concordia Station, Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3217-3239.	6.3	9
38	Analysis of the Forbush Decreases and Ground‣evel Enhancement on September 2017 Using Neutron Spectrometers Operated in Antarctic and Midlatitude Stations. Journal of Geophysical Research: Space Physics, 2019, 124, 661-673.	2.4	9
39	Statistical analyses and correlation between tropospheric temperature and humidity at Dome C, Antarctica. Antarctic Science, 2014, 26, 290-308.	0.9	8
40	The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project. Remote Sensing of Environment, 2021, 266, 112688.	11.0	8
41	Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation. Atmospheric Measurement Techniques, 2014, 7, 3035-3057.	3.1	7
42	lce injected into the tropopause by deep convection – PartÂ1: In the austral convective tropics. Atmospheric Chemistry and Physics, 2019, 19, 6459-6479.	4.9	6
43	Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses. Atmosphere, 2020, 11, 836.	2.3	6
44	Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4746-4759.	3.3	5
45	Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model. Atmospheric Measurement Techniques, 2016, 9, 4355-4373.	3.1	3
46	Variabilités de la vapeur d'eau et de la température troposphérique au Dôme C (station Concordia), Antarctique. Partie II : Résultats scientifiques. La Météorologie, 2014, 8, 35.	0.5	2
47	lce injected into the tropopause by deep convection – Part 2: Over the Maritime Continent. Atmospheric Chemistry and Physics, 2021, 21, 2191-2210.	4.9	1
48	Variabilités de la vapeur d'eau et de la température troposphérique au Dôme C (station Concordia), Antarctique. Partie I : l'instrument Hamstrad. La Météorologie, 2014, 8, 15.	0.5	1
49	Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A. Remote Sensing, 2022, 14, 1403.	4.0	1