Andréa C K Bierhalz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809445/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natamycin release from alginate active films to liquid and semi-solid media. Brazilian Journal of Chemical Engineering, 2022, 39, 455-462.	0.7	2
2	Chitosan microcapsules: Methods of the production and use in the textile finishing. Journal of Applied Polymer Science, 2021, 138, 50482.	1.3	47
3	CELLULOSE NANOMATERIALS IN TEXTILE APPLICATIONS. Cellulose Chemistry and Technology, 2021, 55, 725-741.	0.5	6
4	Dye synthetic solution treatment by direct contact membrane distillation using commercial membranes. Environmental Technology (United Kingdom), 2020, 41, 2253-2265.	1.2	16
5	Direct contact membrane distillation applied to wastewaters from different stages of the textile process. Chemical Engineering Communications, 2020, 207, 1062-1073.	1.5	8
6	Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polymer Degradation and Stability, 2020, 179, 109233.	2.7	9
7	Fundamentals of two-dimensional films and membranes. , 2020, , 35-66.		6
8	Biopolymer-based films and membranes as wound dressings. , 2020, , 165-194.		11
9	Diclofenac release from alginate/carboxymethyl cellulose mono and bilayer films for wound dressing applications. Cellulose, 2020, 27, 6629-6642.	2.4	17
10	Influence of dye class on the comparison of direct contact and vacuum membrane distillation applied to remediation of dyeing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 1337-1347.	0.9	9
11	Direct Contact Membrane Distillation Applied to Colored Reactive or Disperse Dye Solutions. Chemical Engineering and Technology, 2019, 42, 1045-1052.	0.9	16
12	Intensification of water reclamation from textile dyeing wastewater using thermal membrane technologies – Performance comparison of vacuum membrane distillation and thermopervaporation. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107695.	1.8	11
13	Physicochemical properties and release behavior of indomethacin-loaded polysaccharide membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 956-964.	1.8	6
14	Alginate and carboxymethyl cellulose in monolayer and bilayer films as wound dressings: Effect of the polymer ratio. Journal of Applied Polymer Science, 2019, 136, 46941.	1.3	39
15	Composite membranes of alginate and chitosan reinforced with cotton or linen fibers incorporating epidermal growth factor. Materials Science and Engineering C, 2017, 76, 287-294.	3.8	19
16	Development of polysaccharide-based membranes incorporating the bioactive compound aloin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 193-202.	1.8	10
17	Comparison of the properties of membranes produced with alginate and chitosan from mushroom and from shrimp. International Journal of Biological Macromolecules, 2016, 91, 496-504.	3.6	38
18	Tuning the properties of alginate—chitosan membranes by varying the viscosity and the proportions of polymers. Journal of Applied Polymer Science, 2016, 133, .	1.3	18

Andréa C K Bierhalz

#	Article	IF	CITATIONS
19	BIOMATERIALS: TYPES, APPLICATIONS, AND MARKET. Quimica Nova, 2015, , .	0.3	21
20	Protein adsorption onto alginate-pectin microparticles and films produced by ionic gelation. Journal of Food Engineering, 2015, 154, 17-24.	2.7	47
21	Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology, 2014, 57, 494-501.	2.5	73
22	Influence of natamycin loading methods on the physical characteristics of alginate active films. Journal of Supercritical Fluids, 2013, 76, 74-82.	1.6	46
23	Modelling natamycin release from alginate/chitosan active films. International Journal of Food Science and Technology, 2012, 47, 740-746.	1.3	28
24	Influence of Drying Conditions on Physical Properties of Alginate Films. Drying Technology, 2012, 30, 72-79.	1.7	28
25	Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 2012, 110, 18-25.	2.7	176
26	Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 2009, 77, 736-742.	5.1	261