Mariana Gomes de Pinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5809325/publications.pdf

Version: 2024-02-01

70 papers 5,411 citations

94269 37 h-index 91712 69 g-index

77 all docs

77 docs citations

times ranked

77

4755 citing authors

#	Article	IF	CITATIONS
1	Synthetic antimicrobial peptides as enhancers of the bacteriolytic action of staphylococcal phage endolysins. Scientific Reports, 2022, 12, 1245.	1.6	6
2	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	2.0	30
3	Revisiting the Role of VraTSR in <i>Staphylococcus aureus</i> Response to Cell Wall-Targeting Antibiotics. Journal of Bacteriology, 2022, 204, .	1.0	9
4	eHooke: A tool for automated image analysis of spherical bacteria based on cell cycle progression. Biological Imaging, 2021, 1, e3.	1.0	11
5	Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nature Microbiology, 2020, 5, 291-303.	5.9	44
6	Reassessment of the distinctive geometry of Staphylococcus aureus cell division. Nature Communications, 2020, 11, 4097.	5.8	58
7	BPEI-Induced Delocalization of PBP4 Potentiates \hat{I}^2 -Lactams against MRSA. Biochemistry, 2019, 58, 3813-3822.	1.2	17
8	The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathogens, 2019, 15, e1008044.	2.1	32
9	A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages. Scientific Reports, 2019, 9, 7991.	1.6	26
10	SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nature Microbiology, 2019, 4, 1368-1377.	5.9	77
11	The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity. Scientific Reports, 2019, 9, 5010.	1.6	38
12	Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature, 2018, 554, 528-532.	13.7	149
13	PBP4 activity and its overexpression are necessary for PBP4-mediated high-level \hat{l}^2 -lactam resistance. Journal of Antimicrobial Chemotherapy, 2018, 73, 1177-1180.	1.3	19
14	The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Scientific Reports, 2017, 7, 11739.	1.6	53
15	Role of SCCmec type in resistance to the synergistic activity of oxacillin and cefoxitin in MRSA. Scientific Reports, 2017, 7, 6154.	1.6	21
16	A quinolinol-based small molecule with anti-MRSA activity that targets bacterial membrane and promotes fermentative metabolism. Journal of Antibiotics, 2017, 70, 1009-1019.	1.0	7
17	<pre><scp><i>S</i></scp><i>taphylococcus aureus</i> requires at least one <scp>F</scp>ts<scp>K</scp>/<scp>/<scp> <scp> E</scp> protein for correct chromosome segregation. Molecular Microbiology, 2017, 103, 504-517.</scp></scp></pre>	1.2	19
18	Synergy between Ursolic and Oleanolic Acids from Vitellaria paradoxa Leaf Extract and \hat{l}^2 -Lactams against Methicillin-Resistant Staphylococcus aureus: In Vitro and In Vivo Activity and Underlying Mechanisms. Molecules, 2017, 22, 2245.	1.7	34

#	Article	IF	CITATIONS
19	Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets. PLoS Pathogens, 2016, 12, e1005585.	2.1	35
20	The SpollQâ€SpollIAH complex of <scp><i>C</i></scp> <i>lostridium difficile</i> controls forespore engulfment and late stages of gene expression and spore morphogenesis. Molecular Microbiology, 2016, 100, 204-228.	1.2	46
21	FtsZ-Dependent Elongation of a Coccoid Bacterium. MBio, 2016, 7, .	1.8	21
22	Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus. Methods in Molecular Biology, 2016, 1440, 201-213.	0.4	17
23	The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrobial Agents and Chemotherapy, 2016, 60, 1656-1666.	1.4	60
24	An Activityâ€Based Probe for Studying Crosslinking in Live Bacteria. Angewandte Chemie - International Edition, 2015, 54, 10492-10496.	7.2	33
25	Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLoS Pathogens, 2015, 11, e1004891.	2.1	82
26	Characterization of a Novel Small Molecule That Potentiates \hat{l}^2 -Lactam Activity against Gram-Positive and Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2015, 59, 1876-1885.	1.4	23
27	Cell shape dynamics during the staphylococcal cell cycle. Nature Communications, 2015, 6, 8055.	5.8	208
28	Antimicrobial Contact-Active Oligo(2-oxazoline)s-Grafted Surfaces for Fast Water Disinfection at the Point-of-Use. Biomacromolecules, 2015, 16, 3904-3915.	2.6	24
29	MreC and MreD Proteins Are Not Required for Growth of Staphylococcus aureus. PLoS ONE, 2015, 10, e0140523.	1.1	21
30	Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. ELife, 2014, 3, e02277.	2.8	32
31	Differential localization of <scp>LTA</scp> synthesis proteins and their interaction with the cell division machinery in <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2014, 92, 273-286.	1.2	55
32	Reduction of the Peptidoglycan Crosslinking Causes a Decrease in Stiffness of the Staphylococcus aureus Cell Envelope. Biophysical Journal, 2014, 107, 1082-1089.	0.2	83
33	The Holliday junction resolvase RecU is required for chromosome segregation and DNA damage repair in Staphylococcus aureus. BMC Microbiology, 2013, 13, 18.	1.3	23
34	Anti-biofouling 3D porous systems: the blend effect of oxazoline-based oligomers on chitosan scaffolds. Biofouling, 2013, 29, 273-282.	0.8	14
35	Murgocil is a Highly Bioactive Staphylococcal-Specific Inhibitor of the Peptidoglycan Glycosyltransferase Enzyme MurG. ACS Chemical Biology, 2013, 8, 2442-2451.	1.6	75
36	How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nature Reviews Microbiology, 2013, 11, 601-614.	13.6	231

#	Article	IF	Citations
37	Auxiliary factors: a chink in the armor of MRSA resistance to \hat{l}^2 -lactam antibiotics. Current Opinion in Microbiology, 2013, 16, 538-548.	2.3	70
38	Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to \hat{l}^2 -Lactams. ACS Chemical Biology, 2013, 8, 226-233.	1.6	184
39	Effect of Oxygen on Glucose Metabolism: Utilization of Lactate in Staphylococcus Aureus as Revealed by In Vivo NMR Studies. PLoS ONE, 2013, 8, e58277.	1.1	64
40	The Staphylococcus aureus Membrane Protein SA2056 Interacts with Peptidoglycan Synthesis Enzymes. Antibiotics, 2013, 2, 11-27.	1.5	1
41	Restoring Methicillin-Resistant <i>Staphylococcus aureus</i> Susceptibility to \hat{I}^2 -Lactam Antibiotics. Science Translational Medicine, 2012, 4, 126ra35.	5.8	205
42	Blue emission of carbamic acid oligooxazoline biotags. Materials Letters, 2012, 81, 205-208.	1.3	24
43	EzrA Contributes to the Regulation of Cell Size in Staphylococcus aureus. PLoS ONE, 2011, 6, e27542.	1.1	58
44	Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during <i>Staphylococcus aureus</i> cell division. Molecular Microbiology, 2011, 80, 1366-1380.	1.2	61
45	Oxazolineâ€Based Antimicrobial Oligomers: Synthesis by CROP Using Supercritical CO ₂ . Macromolecular Bioscience, 2011, 11, 1128-1137.	2.1	32
46	Monofunctional Transglycosylases Are Not Essential for Staphylococcus aureus Cell Wall Synthesis. Journal of Bacteriology, 2011, 193, 2549-2556.	1.0	51
47	New Role of the Disulfide Stress Effector YjbH in \hat{l}^2 -Lactam Susceptibility of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2011, 55, 5452-5458.	1.4	35
48	Fluorescent Reporters for Studies of Cellular Localization of Proteins in <i>Staphylococcus aureus</i> . Applied and Environmental Microbiology, 2010, 76, 4346-4353.	1.4	40
49	Insertion of Epicatechin Gallate into the Cytoplasmic Membrane of Methicillin-resistant Staphylococcus aureus Disrupts Penicillin-binding Protein (PBP) 2a-mediated β-Lactam Resistance by Delocalizing PBP2. Journal of Biological Chemistry, 2010, 285, 24055-24065.	1.6	59
50	Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in <i>Staphylococcus aureus /i>. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18991-18996.</i>	3.3	225
51	Inactivation of the Saul Type I Restriction-Modification System Is Not Sufficient To Generate <i>Staphylococcus aureus</i> Strains Capable of Efficiently Accepting Foreign DNA. Applied and Environmental Microbiology, 2009, 75, 3034-3038.	1.4	46
52	Evidence for a dual role of PBP1 in the cell division and cell separation of <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 72, 895-904.	1.2	58
53	The different shapes of cocci. FEMS Microbiology Reviews, 2008, 32, 345-360.	3.9	164
54	<i>Staphylococcus aureus</i> PBP4 Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant Strains. Antimicrobial Agents and Chemotherapy, 2008, 52, 3955-3966.	1.4	146

#	Article	IF	Citations
55	Role of PBP1 in Cell Division of Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 3525-3531.	1.0	100
56	Fluorescence Ratio Imaging Microscopy Shows Decreased Access of Vancomycin to Cell Wall Synthetic Sites in Vancomycin-Resistant <i>Staphylococcus aureus </i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 3627-3633.	1.4	74
57	Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiology and Molecular Biology Reviews, 2005, 69, 585-607.	2.9	499
58	Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Molecular Microbiology, 2004, 55, 799-807.	1.2	148
59	AdivIVAnull mutant ofStaphylococcus aureusundergoes normal cell division. FEMS Microbiology Letters, 2004, 240, 145-149.	0.7	56
60	Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Molecular Microbiology, 2003, 50, 871-881.	1.2	215
61	Cocrystal Structures of Diaminopimelate Decarboxylase. Structure, 2002, 10, 1499-1508.	1.6	57
62	An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10886-10891.	3.3	312
63	Complementation of the Essential Peptidoglycan Transpeptidase Function of Penicillin-Binding Protein 2 (PBP2) by the Drug Resistance Protein PBP2A in Staphylococcus aureus. Journal of Bacteriology, 2001, 183, 6525-6531.	1.0	194
64	Cloning, Characterization, and Inactivation of the Gene pbpC, Encoding Penicillin-Binding Protein 3 of Staphylococcus aureus. Journal of Bacteriology, 2000, 182, 1074-1079.	1.0	78
65	Characterization of the murMN Operon Involved in the Synthesis of Branched Peptidoglycan Peptides in Streptococcus pneumoniae. Journal of Biological Chemistry, 2000, 275, 27768-27774.	1.6	57
66	Inactivated pbp4 in Highly Glycopeptide-resistant Laboratory Mutants of Staphylococcus aureus. Journal of Biological Chemistry, 1999, 274, 18942-18946.	1.6	119
67	Antibiotic Resistance As a Stress Response: Complete Sequencing of a Large Number of Chromosomal Loci in <i>Staphylococcus aureus </i> Strain COL That Impact on the Expression of Resistance to Methicillin. Microbial Drug Resistance, 1999, 5, 163-175.	0.9	147
68	Transcriptional Analysis of the <i>Staphylococcus aureus</i> Penicillin Binding Protein 2 Gene. Journal of Bacteriology, 1998, 180, 6077-6081.	1.0	40
69	Transcriptional Analysis of theStaphylococcus aureus Penicillin Binding Protein 2 Gene. Journal of Bacteriology, 1998, 180, 6077-6081.	1.0	10
70	Massive Reduction in Methicillin Resistance by Transposon Inactivation of the Normal PBP2 in a Methicillin-Resistant Strain of Staphylococcus aureus. Microbial Drug Resistance, 1997, 3, 409-413.	0.9	39