
Pedro N Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. Journal of Cleaner Production, 2022, 340, 130660.	9.3	28
2	Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. Journal of Cleaner Production, 2022, 338, 130652.	9.3	38
3	Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. Water (Switzerland), 2022, 14, 686.	2.7	1
4	Nature-Based Solutions for the Mitigation of Persistent and Emerging Contaminants. Water (Switzerland), 2022, 14, 2105.	2.7	0
5	Identification of more than 100 new compounds in the wastewater: Fate of polyethylene/polypropylene oxide copolymers and their metabolites in the aquatic environment. Science of the Total Environment, 2021, 761, 143228.	8.0	14
6	First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. Water (Switzerland), 2021, 13, 1403.	2.7	8
7	Biodegradation kinetics of organic micropollutants and microbial community dynamics in a moving bed biofilm reactor. Chemical Engineering Journal, 2021, 415, 128963.	12.7	22
8	Towards a Cross-Sectoral View of Nature-Based Solutions for Enabling Circular Cities. Water (Switzerland), 2021, 13, 2352.	2.7	17
9	Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water (Switzerland), 2021, 13, 3334.	2.7	46
10	Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. Energies, 2021, 14, 8157.	3.1	3
11	Leaching of herbicidal residues from gravel surfaces – A lysimeter-based study comparing gravels with agricultural topsoil. Environmental Pollution, 2020, 266, 115225.	7.5	7
12	Concentration dependent degradation of pharmaceuticals in WWTP effluent by biofilm reactors. Water Research, 2020, 186, 116389.	11.3	30
13	Constructed Wetlands and Phytoremediation as a Tool for Pharmaceutical Removal. Handbook of Environmental Chemistry, 2020, , 377.	0.4	4
14	Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. Water Research, 2020, 183, 116101.	11.3	73
15	A comparison of the fate of diflufenican in agricultural sandy soil and gravel used in urban areas. Science of the Total Environment, 2020, 715, 136803.	8.0	8
16	A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Systems, 2020, 2, 112-136.	2.0	183
17	Enhanced removal of pharmaceuticals in a biofilter: Effects of manipulating co-degradation by carbon feeding. Chemosphere, 2019, 236, 124303.	8.2	45
18	Dose-dependent effects of acetate on the biodegradation of pharmaceuticals in moving bed biofilm reactors. Water Research, 2019, 159, 302-312.	11.3	52

PEDRO N CARVALHO

#	Article	IF	CITATIONS
19	Electroactive biofilm-based constructed wetland (EABB-CW): A mesocosm-scale test of an innovative setup for wastewater treatment. Science of the Total Environment, 2019, 659, 796-806.	8.0	60
20	Microbial community metabolic profiles in saturated constructed wetlands treating iohexol and ibuprofen. Science of the Total Environment, 2019, 651, 1926-1934.	8.0	23
21	Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. Water Research, 2018, 131, 228-238.	11.3	48
22	Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 2018, 233, 71-80.	7.5	62
23	New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution, 2018, 240, 699-708.	7.5	31
24	Intracellular nitrate in sediments of an oxygen-deficient marine basin is linked to pelagic diatoms. FEMS Microbiology Ecology, 2018, 94, .	2.7	3
25	Methodologies for the analysis of pesticides and pharmaceuticals in sediments and plant tissue. Analytical Methods, 2018, 10, 3791-3803.	2.7	1
26	Microbial Electrochemical Technologies for Wastewater Treatment: Principles and Evolution from Microbial Fuel Cells to Bioelectrochemical-Based Constructed Wetlands. Water (Switzerland), 2018, 10, 1128.	2.7	91
27	Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecological Engineering, 2017, 98, 394-402.	3.6	48
28	Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project. Water Science and Technology, 2017, 76, 1474-1489.	2.5	33
29	Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environmental Pollution, 2017, 229, 362-370.	7.5	59
30	Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Research, 2017, 110, 241-251.	11.3	82
31	Effects of constructed wetland design on ibuprofen removal – A mesocosm scale study. Science of the Total Environment, 2017, 609, 38-45.	8.0	64
32	Stabilization of Preliminary Anaerobically Digested Slurry in Post-Storage: Dynamics of Chemical Characteristics and Hygienic Quality. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	9
33	Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 2017, 98, 378-387.	3.6	32
34	Constructed Wetlands for Water Treatment: New Developments. Water (Switzerland), 2017, 9, 397.	2.7	40
35	Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science and Technology, 2016, 73, 679-686.	2.5	19
36	Constructed Wetlands for Livestock Wastewater Treatment: Antibiotics Removal and Effects on CWs		1

Performance. , 2016, , 267-281.

Pedro N Carvalho

#	Article	IF	CITATIONS
37	Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Research, 2016, 91, 126-136.	11.3	70
38	Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere, 2016, 148, 459-466.	8.2	68
39	Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research, 2016, 23, 2890-2898.	5.3	62
40	Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition. Journal of Environmental Management, 2016, 166, 38-44.	7.8	20
41	Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 2016, 541, 8-22.	8.0	193
42	Design and performance evaluation of a highly loaded aerated treatment wetland managing effluents from a food processing industry in Denmark. Water Practice and Technology, 2015, 10, 644-651.	2.0	4
43	Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresource Technology, 2015, 182, 26-33.	9.6	102
44	Response of a tidal operated constructed wetland to sudden organic and ammonium loading changes in treating high strength artificial wastewater. Ecological Engineering, 2015, 82, 643-648.	3.6	20
45	Stability of Chlorophenols and Their Acetylated Derivatives in Water: Sample Storage Procedures. Journal of AOAC INTERNATIONAL, 2014, 97, 179-182.	1.5	Ο
46	A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Research, 2014, 21, 11729-11763.	5.3	229
47	Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater. Environmental Science and Pollution Research, 2013, 20, 8790-8800.	5.3	35
48	Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresource Technology, 2013, 134, 412-416.	9.6	88
49	Multi-family methodologies for the analysis of veterinary pharmaceutical compounds in sediment and sludge samples: comparison among extraction techniques. Analytical Methods, 2013, 5, 6503.	2.7	11
50	Simultaneous determination of several veterinary pharmaceuticals in effluents from urban, livestock and slaughterhouse wastewater treatment plants using a simple chromatographic method. Water Science and Technology, 2012, 66, 603-611.	2.5	26
51	Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresource Technology, 2012, 116, 497-501.	9.6	73
52	Can salt marsh plants influence levels and distribution of DDTs in estuarine areas?. Estuarine, Coastal and Shelf Science, 2011, 93, 415-419.	2.1	12
53	A headspace SPME-GC-ECD method suitable for determination of chlorophenols in water samples. Analytical and Bioanalytical Chemistry, 2011, 399, 2531-2538.	3.7	32
54	Ability of salt marsh plants for TBT remediation in sediments. Environmental Science and Pollution Research, 2010, 17, 1279-1286.	5.3	19

PEDRO N CARVALHO

#	Article	IF	CITATIONS
55	Butyltin levels in several Portuguese coastal areas. Environmental Monitoring and Assessment, 2009, 159, 183-190.	2.7	13
56	Organochlorine pesticides levels in Portuguese coastal areas. Chemosphere, 2009, 75, 595-600.	8.2	51
57	Application of SPME to the determination of alkylphenols and bisphenol A in cyanobacteria culture media. Analytical and Bioanalytical Chemistry, 2008, 391, 425-432.	3.7	15
58	An expeditious method for the determination of organochlorine pesticides residues in estuarine sediments using microwave assisted pre-extraction and automated headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry. Talanta, 2008, 76, 1124-1129.	5.5	53
59	Headspace solid-phase micro-extraction and gas chromatography-ion trap tandem mass spectrometry method for butyltin analysis in sediments: Optimization and validation. Microchemical Journal, 2007, 87, 147-153.	4.5	32
60	"WETWALLâ€⊷ an innovative design concept for the treatment of wastewater at an urban scale. , 0, 109, 205-220.		19