Jack Alvarenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808695/publications.pdf Version: 2024-02-01

LACK ALVADENCA

#	Article	IF	CITATIONS
1	Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano, 2012, 6, 6569-6577.	14.6	1,118
2	Design of anti-icing surfaces: smooth, textured or slippery?. Nature Reviews Materials, 2016, 1, .	48.7	1,048
3	Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013, 13, 1793-1799.	9.1	426
4	Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Physical Chemistry Chemical Physics, 2013, 15, 581-585.	2.8	284
5	Self-Replenishing Vascularized Fouling-Release Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 13299-13307.	8.0	208
6	Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chemistry of Materials, 2015, 27, 1792-1800.	6.7	181
7	Fluorogel Elastomers with Tunable Transparency, Elasticity, Shapeâ€Memory, and Antifouling Properties. Angewandte Chemie - International Edition, 2014, 53, 4418-4422.	13.8	161
8	Carbon nanotube wires and cables: Near-term applications and future perspectives. Nanoscale, 2011, 3, 4542.	5.6	139
9	Rational Design of Mechanoâ€Responsive Optical Materials by Fine Tuning the Evolution of Strainâ€Dependent Wrinkling Patterns. Advanced Optical Materials, 2013, 1, 381-388.	7.3	115
10	High conductivity carbon nanotube wires from radial densification and ionic doping. Applied Physics Letters, 2010, 97, .	3.3	93
11	Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets. ACS Nano, 2020, 14, 8024-8035.	14.6	68
12	Tunability of liquid-infused silicone materials for biointerfaces. Biointerphases, 2018, 13, 06D401.	1.6	42
13	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	10.0	31
14	Metallic Liquid Gating Membranes. ACS Nano, 2020, 14, 2465-2474.	14.6	30
15	Ultrasonic Welding of Bulk Carbon Nanotube Conductors. Advanced Engineering Materials, 2015, 17, 76-83.	3.5	18
16	Impact of nanometal catalysts on the laser vaporization synthesis of single wall carbon nanotubes. Carbon, 2009, 47, 2431-2435.	10.3	17
17	Tunable infrared transmission for energy-efficient pneumatic building façades. Energy and Buildings, 2020, 226, 110377.	6.7	13
18	Raspberry colloid-templated approach for the synthesis of palladium-based oxidation catalysts with enhanced hydrothermal stability and low-temperature activity. Catalysis Today, 2021, 360, 241-251.	4.4	13

JACK ALVARENGA

#	Article	IF	CITATIONS
19	Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes. Scientific Reports, 2021, 11, 10675.	3.3	12
20	Research Update: Liquid gated membrane filtration performance with inorganic particle suspensions. APL Materials, 2018, 6, 100703.	5.1	9
21	Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces. Journal of Chemical Education, 2013, 90, 625-628.	2.3	6
22	Dynamic Self-Repairing Hybrid Liquid-in-Solid Protective Barrier for Cementitious Materials. ACS Applied Materials & Interfaces, 2020, 12, 31922-31932.	8.0	6
23	A crosslinked dextran sulfate-chitosan nanoparticle for delivery of therapeutic heparin-binding proteins. International Journal of Pharmaceutics, 2021, 610, 121287.	5.2	3
24	Secrets revealed — Spatially selective wetting of plasma-patterned periodic mesoporous organosilica. Canadian Journal of Chemistry, 2012, 90, 1063-1068.	1.1	0