
Shuhan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifurcation analysis and operation region estimation of currentâ€modeâ€controlled SIDO boost converter. IET Power Electronics, 2017, 10, 846-853.	2.1	24
2	Unified Discrete-Mapping Model and Dynamical Behavior Analysis of Current-Mode Controlled Single-Inductor Dual-Output DC–DC Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 366-380.	5.4	23
3	Rethinking Basic Assumptions for Modeling Parasitic Capacitance in Inductors. IEEE Transactions on Power Electronics, 2022, 37, 8281-8289.	7.9	20
4	Stability Analysis for Peak Current-Mode Controlled Buck LED Driver Based on Discrete-Time Modeling. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1567-1580.	5.4	18
5	Small-Signal Modeling and Cross-Regulation Suppressing for Current-Mode Controlled Single-Inductor Dual-Output DC–DC Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 5744-5755.	7.9	18
6	Dynamic Freewheeling Control for SIDO Buck Converter With Fast Transient Performance, Minimized Cross-Regulation, and High Efficiency. IEEE Transactions on Industrial Electronics, 2023, 70, 1467-1477.	7.9	18
7	Flicker-Free Resonant LED Driver With High Power Factor and Passive Current Balancing. IEEE Access, 2021, 9, 6008-6017.	4.2	14
8	Discrete-Time Modeling and Symmetrical Dynamics of <i>V</i> ²-Controlled Buck Converters With Trailing-Edge and Leading-Edge Modulations. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3995-4008.	5.4	13
9	Digital Valley V ² Control for Boost Converter With Fast Load-Transient Performance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2089-2093.	3.0	11
10	Analysis of Pulse Train Controlled PCCM Boost Converter With Low Frequency Oscillation Suppression. IEEE Access, 2018, 6, 68795-68803.	4.2	8
11	Digital Average-Ripple-Based Control Techniques for Switching Converters With Fast Transient Performance. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 89-101.	5.4	7
12	Improved constant onâ€ŧime controlled buck converter with high outputâ€regulation accuracy. Electronics Letters, 2015, 51, 359-360.	1.0	5
13	Small Signal Modeling and RHP Zero Analysis of Tri-state Boost Converter with Different Freewheeling Control Strategies. , 2018, , .		5
14	Unified modelling and dynamical analysis of currentâ€mode controlled singleâ€inductor dualâ€output switching converter with ramp compensation. IET Power Electronics, 2018, 11, 1297-1305.	2.1	3
15	Quasiâ€constantâ€frequency variable offâ€time control technique for buckâ€type DC–DC converter. Electronics Letters, 2015, 51, 1447-1449.	1.0	2
16	Digital average voltage control for switching DC-DC converters. , 2016, , .		2
17	Voltage-mode variable frequency control for single-inductor dual-output buck converter with fast transient response. , 2017, , .		2
18	Unified discreteâ€map modelling and dynamical behaviour analysis of current mode controlled triâ€state dc–dc converters. IET Power Electronics, 2019, 12, 51-60.	2.1	2

#	Article	IF	CITATIONS
19	Discrete-Time Modeling and Stability Analysis of Peak-Current-Mode Controlled Buck Converter with Constant Current Load. , 2018, , .		0
20	Modeling and Analysis of Voltage Ripple-Controlled SIDO Buck Converter in Pseudo-Continuous Conduction Mode with Limited Cross-Regulation and Fast Load Transient Performance. Electronics (Switzerland), 2022, 11, 1731.	3.1	0