
Taavi Lehto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5808552/publications.pdf Version: 2024-02-01

ΤΛΛΥΙΙΕΗΤΟ

#	Article	IF	CITATIONS
1	Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 2011, 39, 3972-3987.	6.5	262
2	PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 2011, 39, 5284-5298.	6.5	199
3	Delivery of oligonucleotideâ€based therapeutics: challenges and opportunities. EMBO Molecular Medicine, 2021, 13, e13243.	3.3	181
4	Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 2016, 106, 172-182.	6.6	174
5	Cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2012, 9, 823-836.	2.4	125
6	Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples. Journal of Molecular Diagnostics, 2014, 16, 127-135.	1.2	120
7	Delivery is key: lessons learnt from developing spliceâ€switching antisense therapies. EMBO Molecular Medicine, 2017, 9, 545-557.	3.3	119
8	Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 2010, 141, 42-51.	4.8	113
9	A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo. Molecular Therapy, 2011, 19, 1457-1467.	3.7	94
10	PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures. Molecular Pharmaceutics, 2013, 10, 199-210.	2.3	83
11	Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Research, 2014, 42, 3207-3217.	6.5	82
12	The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 502-511.	1.4	80
13	Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. Nano Letters, 2015, 15, 4364-4373.	4.5	80
14	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	7.3	74
15	Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials, 2016, 77, 98-110.	5.7	57
16	Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2009, 6, 1195-1205.	2.4	56
17	Solid formulation of cell-penetrating peptide nanocomplexes with siRNA and their stability in simulated gastric conditions. Journal of Controlled Release, 2012, 162, 1-8.	4.8	51
18	Cellular Internalization Kinetics of (Luciferin-)Cell-Penetrating Peptide Conjugates. Bioconjugate Chemistry, 2010, 21, 1662-1672.	1.8	42

ΤΑΑνι Lehto

#	Article	IF	CITATIONS
19	Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for <i>In Vivo</i> Gene Silencing in Leukemia. Bioconjugate Chemistry, 2017, 28, 2393-2409.	1.8	42
20	Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides. Journal of Controlled Release, 2011, 153, 163-172.	4.8	27
21	Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics, 2021, 13, 878.	2.0	24
22	Application of PepFect Peptides for the Delivery of Splice-Correcting Oligonucleotides. Methods in Molecular Biology, 2011, 683, 361-373.	0.4	18
23	Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine, 2014, 9, 2843-2859.	1.7	16
24	Supramolecular Assembly of Aminoethyleneâ€Lipopeptide PMO Conjugates into RNA Spliceâ€Switching Nanomicelles. Advanced Functional Materials, 2019, 29, 1906432.	7.8	14
25	Peptide Nanoparticles for Oligonucleotide Delivery. Progress in Molecular Biology and Translational Science, 2011, 104, 397-426.	0.9	13
26	Sequence-Defined Oligoaminoamides for the Delivery of siRNAs. Methods in Molecular Biology, 2015, 1206, 15-27.	0.4	11
27	Sugar and Polymer Excipients Enhance Uptake and Splice-Switching Activity of Peptide-Dendrimer/Lipid/Oligonucleotide Formulations. Pharmaceutics, 2019, 11, 666.	2.0	10
28	Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells. Virology Journal, 2011, 8, 243.	1.4	9
29	Transfection of Infectious RNA and DNA/RNA Layered Vectors of Semliki Forest Virus by the Cell-Penetrating Peptide Based Reagent PepFect6. PLoS ONE, 2013, 8, e69659.	1.1	7
30	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides. Communications Biology, 2022, 5, 185.	2.0	7
31	Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo. Biomedicines, 2021, 9, 1046.	1.4	6
32	Smad‑binding decoy reduces extracellular matrix expression in human hypertrophic scar fibroblasts. Molecular Medicine Reports, 2020, 22, 4589-4600.	1.1	3
33	Fine Tuning of Phosphorothioate Inclusion in 2′-O-Methyl Oligonucleotides Contributes to Specific Cell Targeting for Splice-Switching Modulation. Frontiers in Physiology, 2021, 12, 689179.	1.3	0