
Anil K Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807821/publications.pdf Version: 2024-02-01

ΔΝΙΙ Κ ΡΛΤΕΙ

#	Article	IF	CITATIONS
1	Algal polysaccharides: current status and future prospects. Phytochemistry Reviews, 2023, 22, 1167-1196.	6.5	41
2	Development of novel green methods for preparation of lead-free preserved pidan (duck egg). Journal of Food Science and Technology, 2023, 60, 966-974.	2.8	7
3	Trends in Lignin Biotransformations for Bio-Based Products and Energy Applications. Bioenergy Research, 2023, 16, 88-104.	3.9	11
4	Resveratrol butyrate esters inhibit lipid biosynthesis in 3T3-L1 cells by AMP-activated protein kinase phosphorylation. Journal of Food Science and Technology, 2023, 60, 1015-1025.	2.8	2
5	Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresource Technology, 2022, 344, 126247.	9.6	34
6	Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresource Technology, 2022, 344, 126415.	9.6	113
7	Lignin valorisation via enzymes: A sustainable approach. Fuel, 2022, 311, 122608.	6.4	64
8	Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 2022, 344, 126343.	9.6	42
9	The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms. Chemosphere, 2022, 290, 133204.	8.2	10
10	Recent advancements in prebiotic oligomers synthesis via enzymatic hydrolysis of lignocellulosic biomass. Bioengineered, 2022, 13, 2139-2172.	3.2	22
11	A Critical Review on the Effect of Lignin Redeposition on Biomass in Controlling the Process of Enzymatic Hydrolysis. Bioenergy Research, 2022, 15, 863-874.	3.9	21
12	Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters. Bioresource Technology, 2022, 347, 126749.	9.6	52
13	A review on global perspectives of sustainable development in bioenergy generation. Bioresource Technology, 2022, 348, 126791.	9.6	91
14	Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Science of the Total Environment, 2022, 817, 153054.	8.0	41
15	Effects of Temperature and Salinity on Growth, Metabolism and Digestive Enzymes Synthesis of Goniopora columna. Biology, 2022, 11, 436.	2.8	4
16	Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. Bioresource Technology, 2022, 351, 126928.	9.6	38
17	Algae as an emerging source of bioactive pigments. Bioresource Technology, 2022, 351, 126910.	9.6	86
18	Chitosan-based nanocomposites for removal of Cr(VI) and synthetic food colorants from wastewater. Bioresource Technology, 2022, 351, 127018.	9.6	19

Anil K Patel

#	Article	IF	CITATIONS
19	Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 2022, 824, 153889.	8.0	67
20	Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. Bioresource Technology, 2022, 354, 127153.	9.6	58
21	Extraction, Biochemical Characterization, and Health Effects of Native and Degraded Fucoidans from Sargassum crispifolium. Polymers, 2022, 14, 1812.	4.5	8
22	Enhancing biohydrogen production from lignocellulosic biomass of Paulownia waste by charge facilitation in Zn doped SnO2 nanocatalysts. Bioresource Technology, 2022, 355, 127299.	9.6	17
23	Structures, Properties and Applications of Alginates. Marine Drugs, 2022, 20, 364.	4.6	86
24	Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts, 2022, 12, 615.	3.5	20
25	Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review. Bioresource Technology, 2022, 360, 127631.	9.6	66
26	Emerging prospects of microbial production of omega fatty acids: Recent updates. Bioresource Technology, 2022, 360, 127534.	9.6	26
27	Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresource Technology, 2021, 320, 124421.	9.6	59
28	Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 2021, 323, 124566.	9.6	145
29	Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresource Technology, 2021, 321, 124496.	9.6	76
30	Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered, 2021, 12, 6793-6807.	3.2	35
31	Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresource Technology, 2021, 328, 124829.	9.6	103
32	Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 2021, 20, 112.	4.0	68
33	Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. Bioresource Technology, 2021, 332, 125181.	9.6	56
34	Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresource Technology, 2021, 332, 125042.	9.6	116
35	Advances in micro- and nano bubbles technology for application in biochemical processes. Environmental Technology and Innovation, 2021, 23, 101729.	6.1	45
36	Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. Bioresource Technology, 2021, 335, 125261.	9.6	44

ANIL K PATEL

#	Article	IF	CITATIONS
37	Characterization of waste cell biomass derived glutamate decarboxylase for in vitro \hat{I}^3 -aminobutyric acid production and value-addition. Bioresource Technology, 2021, 337, 125423.	9.6	8
38	Novel application of microalgae platform for biodesalination process: A review. Bioresource Technology, 2021, 337, 125343.	9.6	16
39	Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresource Technology, 2021, 337, 125451.	9.6	180
40	Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 2021, 340, 125644.	9.6	96
41	Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green. Bioresource Technology, 2021, 340, 125708.	9.6	31
42	Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews, 2021, 151, 111622.	16.4	70
43	Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts. Renewable and Sustainable Energy Reviews, 2021, 152, 111669.	16.4	42
44	Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 2021, 12, 4697-4718.	3.2	43
45	Effects of Lower Temperature on Expression and Biochemical Characteristics of HCV NS3 Antigen Recombinant Protein. Catalysts, 2021, 11, 1297.	3.5	9
46	Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresource Technology, 2020, 300, 122724.	9.6	462
47	Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 2020, 300, 122741.	9.6	125
48	A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresource Technology, 2020, 313, 123681.	9.6	67
49	Promising enzymes for biomass processing. , 2020, , 245-271.		5
50	Production of Celluloytic Enzymes for Lignocellulosic Biomass Hydrolysis. , 2019, , 401-426.		4
51	Split mixotrophy: A novel cultivation strategy to enhance the mixotrophic biomass and lipid yields of Chlorella protothecoides. Bioresource Technology, 2019, 291, 121820.	9.6	55
52	Sedimentation rate-based screening of oleaginous microalgae for utilization as a direct combustion fuel. Bioresource Technology, 2019, 293, 122045.	9.6	23
53	Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports, 2019, 7, 100270.	2.7	66
54	Enhanced biomass and lipid production of Neochloris oleoabundans under high light conditions by anisotropic nature of light-splitting CaCO3 crystal. Bioresource Technology, 2019, 287, 121483.	9.6	29

Anil K Patel

#	Article	IF	CITATIONS
55	Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO2 into Red Gold Astaxanthin: The Potential Applicability. Energies, 2019, 12, 1718.	3.1	41
56	Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology, 2019, 282, 245-253.	9.6	133
57	Thermostable cellulases: Current status and perspectives. Bioresource Technology, 2019, 279, 385-392.	9.6	188
58	Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 2018, 265, 519-531.	9.6	235
59	Land Applications of Biochar: An Emerging Area. Energy, Environment, and Sustainability, 2018, , 171-197.	1.0	7
60	Solid-State Fermentation. , 2018, , 243-254.		2
61	Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresource Technology, 2017, 245, 1352-1361.	9.6	110
62	Environmental application of biochar: Current status and perspectives. Bioresource Technology, 2017, 246, 110-122.	9.6	536
63	Production, Purification, and Application of Microbial Enzymes. , 2017, , 13-41.		38
64	Genetic modification: a tool for enhancing cellulase secretion. Biofuel Research Journal, 2017, 4, 600-610.	13.3	54
65	Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renewable Energy, 2016, 98, 29-42.	8.9	220
66	Novel enzymatic processes applied to the food industry. Current Opinion in Food Science, 2016, 7, 64-72.	8.0	76
67	Whey waste as potential feedstock for biohydrogen production. Renewable Energy, 2016, 98, 221-225.	8.9	42
68	Chitosan: Emergence as potent candidate for green adhesive market. Biochemical Engineering Journal, 2015, 102, 74-81.	3.6	47
69	Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource Technology, 2015, 188, 240-246.	9.6	94
70	Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresource Technology, 2015, 175, 291-297.	9.6	46
71	Biofuels from Biomass. , 2014, , 25-44.		2
72	Preparation of chitosanâ€based adhesives and assessment of their mechanical properties. Journal of Applied Polymer Science, 2013, 127, 3869-3876.	2.6	21

ANIL K PATEL

#	Article	IF	CITATIONS
73	Development of a chitosanâ€based adhesive. Application to wood bonding. Journal of Applied Polymer Science, 2013, 127, 5014-5021.	2.6	58
74	Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 2013, 145, 166-174.	9.6	135
75	Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 2013, 127, 500-507.	9.6	459
76	Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technology, 2013, 145, 345-350.	9.6	124
77	Polysaccharides as Adhesives. Reviews of Adhesion and Adhesives, 2013, 1, 312-345.	3.4	39
78	Evaluation of Probiotic Characteristics of Siderophoregenic Bacillus spp. Isolated from Dairy Waste. Applied Biochemistry and Biotechnology, 2010, 160, 140-155.	2.9	37
79	Probiotic Bile Salt Hydrolase: Current Developments and Perspectives. Applied Biochemistry and Biotechnology, 2010, 162, 166-180.	2.9	118
80	Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 2010, 46, 541-549.	3.2	474
81	Pretreatment of Douglas Fir Wood Biomass for Improving Saccharification Efficiencies. Journal of ASTM International, 2010, 7, 1-8.	0.2	0
82	Recent advances in solid-state fermentation. Biochemical Engineering Journal, 2009, 44, 13-18.	3.6	638
83	Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp Bioresource Technology, 2009, 100, 368-373.	9.6	63
84	Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Research International, 2009, 42, 505-510.	6.2	82
85	Molecular cloning, overexpression and biochemical characterization of hypothetical β-lactamases of <i>Mycobacterium tuberculosis</i> H37Rv. Journal of Applied Microbiology, 2008, 105, 59-67.	3.1	26
86	Alpha amylase from a fungal culture grown on oil cakes and its properties. Brazilian Archives of Biology and Technology, 2004, 47, 309-317.	0.5	74
87	Coconut oil cake––a potential raw material for the production of α-amylase. Bioresource Technology, 2004, 93, 169-174.	9.6	194