Martin Conrad Harmsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Matrix-Derived Hydrogels to Augment Dermal Wound Healing: A Systematic Review. Tissue Engineering - Part B: Reviews, 2022, 28, 1093-1108.	2.5	8
2	Tissue Stromal Vascular Fraction Improves Early Scar Healing: A Prospective Randomized Multicenter Clinical Trial. Aesthetic Surgery Journal, 2022, 42, NP477-NP488.	0.9	6
3	Endothelial function after the exposition of magnesium degradation products. Materials Science and Engineering C, 2022, 134, 112693.	3.8	3
4	Chronic lung diseases: entangled in extracellular matrix. European Respiratory Review, 2022, 31, 210202.	3.0	21
5	Lytic cocktail: An effective method to alleviate severe burn induced hyper-metabolism through regulating white adipose tissue browning. Heliyon, 2022, 8, e09128.	1.4	4
6	Response to: Thoughts on Tissue Stromal Vascular Fraction for Early Scar Healing. Aesthetic Surgery Journal, 2022, , .	0.9	0
7	Supplementation of Facial Fat Grafting to Increase Volume Retention: A Systematic Review. Aesthetic Surgery Journal, 2022, , .	0.9	4
8	Limited Efficacy of Adipose Stromal Cell Secretome-Loaded Skin-Derived Hydrogels to Augment Skin Flap Regeneration in Rats. Stem Cells and Development, 2022, 31, 630-640.	1.1	6
9	An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomaterialia, 2022, 147, 50-62.	4.1	22
10	Cytotoxicity Assessment of Surface-Modified Magnesium Hydroxide Nanoparticles. ACS Omega, 2022, 7, 17528-17537.	1.6	4
11	Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applications. , 2022, 139, 212967.		7
12	Facial Lipofilling: A Difference Between Volume Restoration and Tissue Rejuvenation. Aesthetic Surgery Journal, 2021, 41, NP1247-NP1248.	0.9	2
13	Bioactive decellularized cardiac extracellular matrix-based hydrogel as a sustained-release platform for human adipose tissue-derived stromal cell-secreted factors. Biomedical Materials (Bristol), 2021, 16, 025022.	1.7	14
14	The Addition of Tissue Stromal Vascular Fraction to Platelet-Rich Plasma Supplemented Lipofilling Does Not Improve Facial Skin Quality: A Prospective Randomized Clinical Trial. Aesthetic Surgery Journal, 2021, 41, NP1000-NP1013.	0.9	9
15	An immune regulatory 3D-printed alginate-pectin construct for immunoisolation of insulin producing β-cells. Materials Science and Engineering C, 2021, 123, 112009.	3.8	30
16	Perfusion Decellularization of Extrahepatic Bile Duct Allows Tissue-Engineered Scaffold Generation by Preserving Matrix Architecture and Cytocompatibility. Materials, 2021, 14, 3099.	1.3	3
17	High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells. Scientific Reports, 2021, 11, 13493.	1.6	15
18	Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Frontiers in Pharmacology, 2021, 12, 669037.	1.6	8

#	Article	IF	CITATIONS
19	Autologous Lipofilling Improves Clinical Outcome in Patients With Symptomatic Dermal Scars Through Induction of a Pro-Regenerative Immune Response. Aesthetic Surgery Journal, 2021, , .	0.9	3
20	Adipose Tissue-Derived Stromal Cells Alter the Mechanical Stability and Viscoelastic Properties of Gelatine Methacryloyl Hydrogels. International Journal of Molecular Sciences, 2021, 22, 10153.	1.8	14
21	Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels. Polymers, 2021, 13, 3113.	2.0	23
22	Reciprocal regulation of endothelial–mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease. Scientific Reports, 2021, 11, 17764.	1.6	4
23	The influence of adipocyte-derived stem cells (ASCs) on the ischemic epigastric flap survival in diabetic rats. Acta Cirurgica Brasileira, 2021, 36, e360907.	0.3	Ο
24	Fractionation of Adipose Tissue Procedure With a Disposable One-Hole Fractionator. Aesthetic Surgery Journal, 2020, 40, NP194-NP201.	0.9	8
25	The Difference between Stromal Vascular Fraction Isolation and Fat Emulsification. Plastic and Reconstructive Surgery, 2020, 145, 232e-233e.	0.7	3
26	Topography-driven alterations in endothelial cell phenotype and contact guidance. Heliyon, 2020, 6, e04329.	1.4	14
27	Reply: The Effects of Facial Lipografting on Skin Quality: A Systematic Review. Plastic and Reconstructive Surgery, 2020, 146, 93e-94e.	0.7	Ο
28	Topography-Mediated Myotube and Endothelial Alignment, Differentiation, and Extracellular Matrix Organization for Skeletal Muscle Engineering. Polymers, 2020, 12, 1948.	2.0	11
29	Human Lung Tissue Retains Stiffness and Viscoelasticity Irrespective of Cold Storage. , 2020, , .		Ο
30	Interaction of different cell types with magnesium modified by plasma electrolytic oxidation. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111153.	2.5	13
31	Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy. Frontiers in Cell and Developmental Biology, 2020, 8, 387.	1.8	11
32	Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Frontiers in Immunology, 2020, 11, 1071.	2.2	32
33	Mechanical Characterization of Extracellular Vesicles Derived from Immortalized Adipose Stromal Cells. Biophysical Journal, 2020, 118, 252a.	0.2	0
34	Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Frontiers in Bioengineering and Biotechnology, 2020, 8, 520.	2.0	33
35	Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L698-L704.	1.3	102
36	Directional topography gradients drive optimum alignment and differentiation of human myoblasts. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2234-2245.	1.3	28

#	Article	IF	CITATIONS
37	Human Lung Extracellular Matrix Hydrogels Replicate Biomechanics of Diseased and Nondiseased Lung. , 2019, , .		1
38	Adipose tissue–derived stromal cells' conditioned medium modulates endothelialâ€mesenchymal transition induced by ILâ€1β/TGFâ€Î²2 but does not restore endothelial function. Cell Proliferation, 2019, 52, e12629.	2.4	13
39	The Development of Facial Lipofilling from a Historical Point of View. Facial Plastic Surgery, 2019, 35, 358-367.	0.5	11
40	Isolation of Stromal Vascular Fraction by Fractionation of Adipose Tissue. Methods in Molecular Biology, 2019, 1993, 91-103.	0.4	16
41	Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1693-1701.	1.9	29
42	Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis. Stem Cells International, 2019, 2019, 1-14.	1.2	28
43	Coatings for biodegradable magnesium-based supports for therapy of vascular disease: A general view. Materials Science and Engineering C, 2019, 102, 150-163.	3.8	63
44	Adipose tissueâ€derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 973-985.	1.3	45
45	Considerations about sterilization of samples of pure magnesium modified by plasma electrolytic oxidation. Surface and Coatings Technology, 2019, 363, 106-111.	2.2	2
46	The Effects of Facial Lipografting on Skin Quality: A Systematic Review. Plastic and Reconstructive Surgery, 2019, 144, 784e-797e.	0.7	24
47	Enhancement of Progenitor Cells by Two-Step Centrifugation of Emulsified Lipoaspirates. Plastic and Reconstructive Surgery, 2019, 143, 893e-894e.	0.7	2
48	MicroRNAâ€374b induces endothelialâ€ŧoâ€mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling. Journal of Pathology, 2019, 247, 456-470.	2.1	22
49	Effect of Dentin Matrix Components on the Mineralization of Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2019, 25, 1104-1115.	1.6	2
50	Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2019, 224, 242-253.	0.8	333
51	Human lung stiffness and viscoelasticity replicated in extracellular matrix hydrogels. , 2019, , .		2
52	Stiffness and viscoelasticity of human lung tissue unaltered by freeze-thawing. , 2019, , .		1
53	Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology, 2018, 223, 729-743.	0.8	56
54	Formation of nanotubular TiO ₂ structures with varied surface characteristics for biomaterial applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1341-1354.	2.1	20

MARTIN CONRAD HARMSEN

#	Article	IF	CITATIONS
55	Endothelial–mesenchymal transition in atherosclerosis. Cardiovascular Research, 2018, 114, 565-577.	1.8	239
56	Perivascular scaffolds loaded with adipose tissueâ€derived stromal cells attenuate development and progression of abdominal aortic aneurysm in rats. Journal of Biomedical Materials Research - Part A, 2018, 106, 2494-2506.	2.1	7
57	Analyses of Synthetic <i>N</i> -Acyl Dopamine Derivatives Revealing Different Structural Requirements for Their Anti-inflammatory and Transient-Receptor-Potential-Channel-of-the-Vanilloid-Receptor-Subfamily-Subtype-1 (TRPV1)-Activating Properties, Journal of Medicinal Chemistry, 2018, 61, 3126-3137.	2.9	8
58	Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e261-e274.	1.3	70
59	The Addition of Platelet-Rich Plasma to Facial Lipofilling: A Double-Blind, Placebo-Controlled, Randomized Trial. Plastic and Reconstructive Surgery, 2018, 141, 331-343.	0.7	66
60	The Pericytic Phenotype of Adipose Tissue-Derived Stromal Cells Is Promoted by NOTCH2. Stem Cells, 2018, 36, 240-251.	1.4	30
61	Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives. Journal of Biomaterials Applications, 2018, 33, 725-740.	1.2	23
62	Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-Î21-induced differentiation of human cardiac fibroblasts into myofibroblasts. Scientific Reports, 2018, 8, 16633.	1.6	31
63	Augmentation of Dermal Wound Healing by Adipose Tissue-Derived Stromal Cells (ASC). Bioengineering, 2018, 5, 91.	1.6	25
64	Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants. Surface and Coatings Technology, 2018, 354, 28-37.	2.2	26
65	Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. Scientific Reports, 2018, 8, 12529.	1.6	15
66	Reply. Plastic and Reconstructive Surgery, 2018, 142, 796e-798e.	0.7	1
67	Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells. Diabetologia, 2018, 61, 2371-2385.	2.9	34
68	Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells. Methods in Molecular Biology, 2017, 1553, 55-65.	0.4	2
69	Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TCF-β1. Scientific Reports, 2017, 7, 42487.	1.6	30
70	The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3220-3235.	1.3	80
71	Mechanical Micronization of Lipoaspirates. Plastic and Reconstructive Surgery, 2017, 139, 1369e-1370e.	0.7	18
72	Human Cytomegalovirus-Encoded Receptor US28 Is Expressed in Renal Allografts and Facilitates Viral Spreading In Vitro. Transplantation, 2017, 101, 531-540.	0.5	12

#	Article	IF	CITATIONS
73	Human adipose stromal cells resist the detrimental effects of hyperglycaemic modified extracellular matrix in contrast to human retinal pericytes. Cytotherapy, 2017, 19, S230.	0.3	0
74	Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, Three Rs Strategies, and Harm–Benefit Analysis. Tissue Engineering - Part C: Methods, 2017, 23, 850-862.	1.1	22
75	IL-4 driven transcription factor FoxQ1 is expressed by monocytes in atopic dermatitis and stimulates monocyte migration. Scientific Reports, 2017, 7, 16847.	1.6	14
76	Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology, 2017, 222, 952-959.	0.8	42
77	Recombinant human collagen-based microspheres mitigate cardiac conduction slowing induced by adipose tissue-derived stromal cells. PLoS ONE, 2017, 12, e0183481.	1.1	9
78	Endothelial Plasticity: Shifting Phenotypes through Force Feedback. Stem Cells International, 2016, 2016, 1-15.	1.2	55
79	Platelet-Rich Plasma Influences Expansion and Paracrine Function of Adipose-Derived Stromal Cells in a Dose-Dependent Fashion. Plastic and Reconstructive Surgery, 2016, 137, 554e-565e.	0.7	23
80	Development of recombinant collagenâ€peptideâ€based vehicles for delivery of adiposeâ€derived stromal cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 503-516.	2.1	22
81	Efficient generation of smooth muscle cells from adiposeâ€derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnology Journal, 2016, 11, 932-944.	1.8	28
82	Radiofluorinated <i>N</i> -Octanoyl Dopamine ([¹⁸ F]F-NOD) as a Tool To Study Tissue Distribution and Elimination of NOD in Vitro and in Vivo. Journal of Medicinal Chemistry, 2016, 59, 9855-9865.	2.9	5
83	The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair and Regeneration, 2016, 24, 994-1003.	1.5	54
84	Hyperglycemia Induces Bioenergetic Changes in Adipose-Derived Stromal Cells While Their Pericytic Function Is Retained. Stem Cells and Development, 2016, 25, 1444-1453.	1.1	28
85	<i>N</i> -octanoyl dopamine treatment exerts renoprotective properties in acute kidney injury but not in renal allograft recipients. Nephrology Dialysis Transplantation, 2016, 31, 564-573.	0.4	10
86	Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet. Physiology and Behavior, 2016, 157, 246-257.	1.0	6
87	The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence. Angiogenesis, 2016, 19, 9-24.	3.7	62
88	Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2. Cellular Signalling, 2015, 27, 1589-1596.	1.7	56
89	MicroRNAs in Tissue Engineering and Regenerative Medicine. , 2015, , 1159-1200.		1
90	Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovascular Research, 2015, 108, 377-386.	1.8	189

#	Article	IF	CITATIONS
91	Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells and Development, 2015, 24, 1493-1505.	1.1	20
92	Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovascular Research, 2015, 105, 86-95.	1.8	43
93	Extracellular matrix components of adipose derived stromal cells promote alignment, organization, and maturation of cardiomyocytes <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2015, 103, 1840-1848.	2.1	25
94	Adipose Tissue–Derived Stromal Cells Inhibit TGF-β1–Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar–Derived Fibroblasts in a Paracrine Fashion. Plastic and Reconstructive Surgery, 2014, 134, 699-712.	0.7	71
95	Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. Journal of Translational Medicine, 2013, 11, 39.	1.8	57
96	The flow dependency of Tie2 expression in endotoxemia. Intensive Care Medicine, 2013, 39, 1262-1271.	3.9	39
97	IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology, 2013, 218, 443-454.	0.8	171
98	The Effect of Donor Variation and Senescence on Endothelial Differentiation of Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2013, 19, 2318-2329.	1.6	26
99	Pericytes in the eye. Pflugers Archiv European Journal of Physiology, 2013, 465, 789-796.	1.3	43
100	Physical Properties and Erosion Behavior of Poly(trimethylene carbonateâ€≺i>coâ€îµâ€€aprolactone) Networks. Macromolecular Bioscience, 2013, 13, 573-583.	2.1	13
101	Mesenchymal Stem Cells: Promising for Myocardial Regeneration?. Current Stem Cell Research and Therapy, 2013, 8, 270-277.	0.6	43
102	Cellular plasticity: the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy. Canadian Journal of Physiology and Pharmacology, 2012, 90, 275-285.	0.7	10
103	MicroRNA-1 and MicroRNA-206 Improve Differentiation Potential of Human Satellite Cells: A Novel Approach for Tissue Engineering of Skeletal Muscle. Tissue Engineering - Part A, 2012, 18, 889-898.	1.6	29
104	Human macrophages primed with angiogenic factors show dynamic plasticity, irrespective of extracellular matrix components. Immunobiology, 2012, 217, 299-306.	0.8	25
105	A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation, 2012, 84, 314-321.	1.0	42
106	Hypoxia Promotes Proliferation of Human Myogenic Satellite Cells: A Potential Benefactor in Tissue Engineering of Skeletal Muscle. Tissue Engineering - Part A, 2011, 17, 1747-1758.	1.6	46
107	Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials, 2011, 32, 723-733.	5.7	88
108	The tissue response to photopolymerized PEGâ€p(HPMAmâ€lactate)â€based hydrogels. Journal of Biomedical Materials Research - Part A, 2011, 97A, 219-229.	2.1	21

#	Article	IF	CITATIONS
109	Endotoxin contamination delays the foreign body reaction. Journal of Biomedical Materials Research - Part A, 2011, 98A, 527-534.	2.1	20
110	The role of collagen receptors Endo180 and DDR-2 in the foreign body reaction against non-crosslinked collagen and gelatin. Biomaterials, 2011, 32, 1339-1350.	5.7	14
111	Oral Carnosine Supplementation Prevents Vascular Damage in Experimental Diabetic Retinopathy. Cellular Physiology and Biochemistry, 2011, 28, 125-136.	1.1	87
112	Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering. Materials, 2011, 4, 1705-1727.	1.3	8
113	Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials, 2010, 31, 3910-3919.	5.7	36
114	Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering. Journal of Controlled Release, 2010, 148, e74-e76.	4.8	9
115	<i>In vivo</i> behavior of trimethylene carbonate and εâ€caprolactoneâ€based (<i>co</i>)polymer networks: Degradation and tissue response. Journal of Biomedical Materials Research - Part A, 2010, 95A, 940-949.	2.1	40
116	The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering: Towards a Suitable Membrane for a Bioartificial Kidney. Macromolecular Bioscience, 2010, 10, 1345-1354.	2.1	49
117	The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials, 2010, 31, 9192-9201.	5.7	68
118	Optimization of the culturing conditions of human umbilical cord bloodâ€derived endothelial colonyâ€forming cells under xenoâ€free conditions applying a transcriptomic approach. Genes To Cells, 2010, 15, 671-687.	0.5	17
119	Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovascular Research, 2010, 86, 506-515.	1.8	109
120	Recombinant Gelatin Microspheres: Novel Formulations for Tissue Repair?. Tissue Engineering - Part A, 2010, 16, 1811-1821.	1.6	26
121	Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2010, 49, 606-616.	0.9	72
122	Ciclosporin Does Not Influence Bone Marrow-Derived Cell Differentiation to Myofibroblasts Early after Renal Ischemia/Reperfusion. American Journal of Nephrology, 2009, 30, 73-83.	1.4	3
123	Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. American Journal of Physiology - Renal Physiology, 2009, 296, F1314-F1322.	1.3	70
124	Pleiotropism of Adiponectin. Circulation Research, 2009, 104, 1029-1031.	2.0	17
125	Current opportunities and challenges in skeletal muscle tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 407-415.	1.3	145
126	Endothelial progenitor cell-based neovascularization: implications for therapy. Trends in Molecular Medicine, 2009, 15, 180-189.	3.5	148

#	Article	IF	CITATIONS
127	Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials, 2008, 29, 3703-3711.	5.7	70
128	EpCAM homologues exhibit epithelial-specific but different expression patterns in the kidney. Transgenic Research, 2008, 17, 229-238.	1.3	12
129	Generating New Blood Flow: Integrating Developmental Biology and Tissue Engineering. Trends in Cardiovascular Medicine, 2008, 18, 312-323.	2.3	19
130	Trimethylene Carbonate and Ϊμ-Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation. Biomacromolecules, 2008, 9, 3208-3215.	2.6	65
131	Spatial and Temporal Expression Patterns of the Epithelial Cell Adhesion Molecule (EpCAM/EGP-2) in Developing and Adult Kidneys. Nephron Experimental Nephrology, 2008, 107, e119-e131.	2.4	20
132	EpCAM in morphogenesis. Frontiers in Bioscience - Landmark, 2008, Volume, 5050.	3.0	21
133	Biodistribution Studies of Epithelial Cell Adhesion Molecule (EpCAM)-Directed Monoclonal Antibodies in the EpCAM-Transgenic Mouse Tumor Model. Journal of Immunology, 2007, 179, 1362-1368.	0.4	13
134	Stem cell-related cardiac gene expression early after murine myocardial infarction. Cardiovascular Research, 2007, 73, 783-793.	1.8	67
135	Bone Marrow–Derived Myofibroblasts Contribute to the Renal Interstitial Myofibroblast Population and Produce Procollagen I after Ischemia/Reperfusion in Rats. Journal of the American Society of Nephrology: JASN, 2007, 18, 165-175.	3.0	157
136	Tubular Engraftment and Myofibroblast Differentiation of Recipient-Derived Cells After Experimental Kidney Transplantation. Transplantation, 2007, 84, 1003-1011.	0.5	7
137	Infection of Human Endothelium In Vitro by Cytomegalovirus Causes Enhanced Expression of Purinergic Receptors: A Potential Virus Escape Mechanism?. Transplantation, 2007, 84, 1343-1347.	0.5	15
138	A promising technique for transplantation of bone marrow-derived endothelial progenitor cells into rat heart. Cardiovascular Pathology, 2007, 16, 127-135.	0.7	16
139	Epithelial Cell Adhesion Molecule. American Journal of Pathology, 2007, 171, 386-395.	1.9	495
140	Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Research and Therapy, 2007, 9, R84.	1.6	69
141	Dependence of Neovascularization Mechanisms on the Molecular Microenvironment. Tissue Engineering, 2007, 13, 2913-2921.	4.9	9
142	Macrophage Depletion Impairs Wound Healing and Increases Left Ventricular Remodeling after Myocardial Injury in Mice. American Journal of Pathology, 2007, 170, 818-829.	1.9	463
143	Cytokine and chemokine dynamics differ between rats and mice after collagen implantation. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 398-405.	1.3	20
144	Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomaterials, 2007, 28, 1470-1479.	5.7	41

MARTIN CONRAD HARMSEN

#	Article	IF	CITATIONS
145	Molecular Recognition in Poly(ε-caprolactone)-Based Thermoplastic Elastomers. Biomacromolecules, 2006, 7, 3385-3395.	2.6	64
146	Increased inflammatory response and neovascularization in reperfused vs. nonreperfused murine myocardial infarction. Cardiovascular Pathology, 2006, 15, 83-90.	0.7	84
147	The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer. Virus Research, 2006, 118, 196-200.	1.1	38
148	Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. Journal of Molecular and Cellular Cardiology, 2006, 41, 86-96.	0.9	44
149	The correlation between difference in foreign body reaction between implant locations and cytokine and MMP expression. Biomaterials, 2006, 27, 5763-5770.	5.7	63
150	Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones. Biomaterials, 2006, 27, 5490-5501.	5.7	94
151	The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials, 2006, 27, 2247-2257.	5.7	55
152	CD64-Directed Immunotoxin Inhibits Arthritis in a Novel CD64 Transgenic Rat Model. Journal of Immunology, 2006, 176, 5833-5838.	0.4	50
153	Kinetics of US28 Gene Expression during Active Human Cytomegalovirus Infection in Lungâ€īransplant Recipients. Journal of Infectious Diseases, 2006, 193, 1552-1556.	1.9	15
154	Cellular and Molecular Dynamics in the Foreign Body Reaction. Tissue Engineering, 2006, 12, 1955-1970.	4.9	334
155	The modulation of angiogenesis in the foreign body response by the poxviral protein M-T7. Biomaterials, 2005, 26, 4874-4881.	5.7	19
156	Protease activity of plasma hemopexin. Kidney International, 2005, 68, 603-610.	2.6	63
157	Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney International, 2005, 68, 2572-2581.	2.6	57
158	A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Materials, 2005, 4, 568-574.	13.3	410
159	Viral chemokine-modulatory proteins: tools and targets. Cytokine and Growth Factor Reviews, 2005, 16, 91-103.	3.2	37
160	Use of the EGP-2/Ep-CAM promoter for targeted expression of heterologous genes in carcinoma derived cell lines. Cancer Gene Therapy, 2004, 11, 603-612.	2.2	20
161	Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Research, 2004, 63, 197-208.	1.9	65
162	Synergy of bovine lactoferrin with the anti-cytomegalovirus drug cidofovir in vitro. Antiviral Research, 2003, 58, 159-165.	1.9	17

#	Article	IF	CITATIONS
163	Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease. Transplantation, 2003, 76, 1022-1028.	0.5	14
164	Donor-derived circulating endothelial cells after kidney transplantation1. Transplantation, 2002, 74, 1320-1327.	0.5	21
165	Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood, 2001, 97, 1165-1171.	0.6	309
166	Cancer immunotherapy: insights from transgenic animal models. Critical Reviews in Oncology/Hematology, 2001, 40, 53-76.	2.0	14
167	Direct Quantification of Human Cytomegalovirus Immediate-Early and Late mRNA Levels in Blood of Lung Transplant Recipients by Competitive Nucleic Acid Sequence-Based Amplification. Journal of Clinical Microbiology, 2001, 39, 251-259.	1.8	21
168	Acute rejection before cytomegalovirus infection enhances von Willebrand factor and soluble VCAM-1 in blood. Kidney International, 2000, 58, 2533-2542.	2.6	26
169	Towards Standardization of the Human Cytomegalovirus Antigenemia Assay. Intervirology, 1999, 42, 382-389.	1.2	10
170	Charge modification of plasma and milk proteins results in antiviral active compounds. Journal of Peptide Science, 1999, 5, 563.	0.8	2
171	Humoral Immune Response to Human Cytomegalovirus in Patients Undergoing Percutaneous Transluminal Coronary Angioplasty. Vaccine Journal, 1999, 6, 45-49.	2.6	6
172	Prior Cytomegalovirus Infection Does Not Predict Clinical Outcome after Percutaneous Transluminal Coronary Angioplasty. Cardiology, 1998, 90, 263-268.	0.6	6
173	A homologous gene-reporter system for the basidiomycete Schizophyllum commune based on internally deleted homologous genes. Molecular Genetics and Genomics, 1993, 238-238, 91-96.	2.4	31
174	Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Current Genetics, 1992, 22, 447-454.	0.8	107
175	Sequences of three dsRNAs associated with La France disease of the cultivated mushroom (Agaricus) Tj ETQq1	1 0.78431	4 rgBT /Overlo