Georgios M Kontogeorgis

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5807048/georgios-m-kontogeorgis-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 9,212 49 327 h-index g-index papers citations 6.42 10,412 340 3.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
327	Machine learning for the prediction of viscosity of ionic liquid water mixtures. <i>Journal of Molecular Liquids</i> , 2022 , 350, 118546	6	O
326	An analysis of the parameters in the Debye-Hökel theory. Fluid Phase Equilibria, 2022, 556, 113398	2.5	1
325	Conclusions from Round Table Discussion during IUT of ESAT 2021 electrolyte thermodynamics challenges - From industrial needs to academic research. <i>Fluid Phase Equilibria</i> , 2022 , 556, 113399	2.5	1
324	A Review of Electrolyte Equations of State with Emphasis on Those Based on Cubic and Cubic-Plus-Association (CPA) Models. <i>International Journal of Thermophysics</i> , 2022 , 43, 1	2.1	1
323	Importance of the Relative Static Permittivity in electrolyte SAFT-VR Mie Equations of State. <i>Fluid Phase Equilibria</i> , 2022 , 551, 113256	2.5	1
322	Computer-aided design and solvent selection for organic paint and coating formulations. <i>Progress in Organic Coatings</i> , 2022 , 162, 106568	4.8	0
321	Modelling study on phase equilibria behavior of ionic liquid-based aqueous biphasic systems. <i>Chemical Engineering Science</i> , 2022 , 247, 116904	4.4	3
320	Comparison of Models for the Prediction of the Electrical Conductivity of Electrolyte Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3168-3185	3.9	1
319	REMOVED: Water Structure, Properties and Some Applications A review. <i>Chemical Thermodynamics and Thermal Analysis</i> , 2022 , 6, 100053		4
318	Structural characteristics of low-density environments in liquid water <i>Physical Review E</i> , 2022 , 105, 03	4 6 04	3
317	Rigorous Phase Equilibrium Calculation Methods for Strong Electrolyte Solutions: The Isothermal Flash. <i>Fluid Phase Equilibria</i> , 2022 , 558, 113441	2.5	О
316	Modeling of Gas Solubility in Aqueous Electrolyte Solutions with the eSAFT-VR Mie Equation of State. <i>Industrial & Description of State. Industrial & Description of State and S</i>	3.9	3
315	Computer-Aided Design of Formulated Products. <i>Current Opinion in Colloid and Interface Science</i> , 2021 , 101536	7.6	1
314	Estimating Hansen solubility parameters of organic pigments by group contribution methods. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 31, 186-197	3.2	5
313	Industrial Requirements for Thermodynamic and Transport Properties: 2020. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 4987-5013	3.9	30
312	Water⊞ydrocarbon Phase Equilibria with SAFT-VR Mie Equation of State. <i>Industrial &</i> Engineering Chemistry Research, 2021 , 60, 5278-5299	3.9	3
311	Application of Quantum Chemistry Insights to the Prediction of Phase Equilibria in Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 5992-6005	3.9	2

(2020-2021)

310	Benchmarking of Separation Methods for Bioethanol (. <i>Industrial & amp; Engineering Chemistry Research</i> , 2021 , 60, 5924-5944	3.9	3
309	Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar Cubic-Plus-Association Equation of State. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 7602-7619	9 ^{8.3}	7
308	Ionic liquid-based in situ product removal design exemplified for an acetone-butanol-ethanol fermentation. <i>Biotechnology Progress</i> , 2021 , 37, e3183	2.8	2
307	Distinguishing Weak and Strong Hydrogen Bonds in Liquid Water-A Potential of Mean Force-Based Approach. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 7187-7198	3.4	8
306	Towards a predictive Cubic Plus Association equation of state. Fluid Phase Equilibria, 2021, 540, 113045	2.5	2
305	Costa Tsonopoulos Ihis legacy and some personal reflections on cubic equations of state and beyond. <i>Fluid Phase Equilibria</i> , 2021 , 533, 112895	2.5	O
304	Good Reporting Practice for Thermophysical and Thermochemical Property Measurements (IUPAC Technical Report) <i>Pure and Applied Chemistry</i> , 2021 , 93,	2.1	14
303	Phase envelope calculations of synthetic gas systems with a crossover equation of state. <i>Journal of Supercritical Fluids</i> , 2021 , 173, 105222	4.2	0
302	New Association Schemes for Tri-Ethylene Glycol. Fluid Phase Equilibria, 2021, 113254	2.5	1
301	Investigation of the performance of e-CPA for a wide range of properties for aqueous NaCl solutions. <i>Fluid Phase Equilibria</i> , 2021 , 548, 113167	2.5	4
300	Separation of NH3/CO2 from melamine tail gas with ionic liquid: Process evaluation and thermodynamic properties modelling. <i>Separation and Purification Technology</i> , 2021 , 274, 119007	8.3	7
299	Process Analysis of Shea Butter Solvent Fractionation Using a Generic Systematic Approach. <i>Industrial & Description of Shear Chemistry Research</i> , 2020 , 59, 9152-9164	3.9	6
298	Analysis of Some Electrolyte Models Including Their Ability to Predict the Activity Coefficients of Individual Ions. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 11790-11809	3.9	14
297	Developing group contribution models for the estimation of Atmospheric Lifetime and Minimum Ignition Energy. <i>Chemical Engineering Science</i> , 2020 , 226, 115866	4.4	2
296	Matching the critical point of associating fluids with the Cubic Plus Association equation of state. <i>Fluid Phase Equilibria</i> , 2020 , 526, 112674	2.5	1
295	Equations of state in three centuries. Are we closer to arriving to a single model for all applications?. <i>Chemical Engineering Science: X</i> , 2020 , 7, 100060	1.1	5
294	A review of computer-aided design of paints and coatings. <i>Current Opinion in Chemical Engineering</i> , 2020 , 27, 107-120	5.4	9
293	A new study of associating inhomogeneous fluids with classical density functional theory. <i>Molecular Physics</i> , 2020 , 118, e1725668	1.7	5

292	A group contribution-based prediction method for the electrical conductivity of ionic liquids. <i>Fluid Phase Equilibria</i> , 2020 , 509, 112462	2.5	8
291	Ionic-Liquid-Based Bioisoprene Recovery Process Design. <i>Industrial & Designe Engineering Chemistry Research</i> , 2020 , 59, 7355-7366	3.9	5
290	Structure optimization of tailored ionic liquids and process simulation for shale gas separation. <i>AICHE Journal</i> , 2020 , 66, e16794	3.6	19
289	Modeling systems relevant to the biodiesel production using the CPA equation of state. Part 2. Systems with supercritical CO2. <i>Fluid Phase Equilibria</i> , 2020 , 504, 112337	2.5	2
288	A multi-layered view of chemical and biochemical engineering. <i>Chemical Engineering Research and Design</i> , 2020 , 155, A133-A145	5.5	43
287	A computational tool for parameter estimation in EoS: New methodologies and natural gas phase equilibria calculations. <i>Chemical Engineering Science</i> , 2020 , 215, 115437	4.4	3
286	A model-based solvent selection and design framework for organic coating formulations. <i>Progress in Organic Coatings</i> , 2020 , 140, 105471	4.8	5
285	Modeling the Critical and Phase Equilibrium Properties of Pure Fluids and Mixtures with the Crossover Cubic-Plus-Association Equation of State. <i>Journal of Chemical & Data</i> , 2020, 65, 1095-1107	2.8	4
284	Thermodynamic modeling of gas solubility in aqueous solutions of quaternary ammonium salts with the e-CPA equation of state. <i>Fluid Phase Equilibria</i> , 2020 , 507, 112423	2.5	7
283	Predicting activity coefficients with the DebyeHtkel theory using concentration dependent static permittivity. <i>AICHE Journal</i> , 2020 , 66, e16651	3.6	9
282	Group Contribution Method to Estimate the Biodegradability of Organic Compounds. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 20916-20928	3.9	4
281	Evaluating the Performance of the PC-SAFT and CPA Equations of State on Anomalous Properties of Water. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 5718-5734	2.8	6
280	Methodology to Predict Thermodynamic Data from Spectroscopic Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 21548-21566	3.9	2
279	On the study of the vapor-liquid interface of associating fluids with classical density functional theory. <i>Fluid Phase Equilibria</i> , 2020 , 522, 112744	2.5	3
278	Solubility Modeling of Air in Aqueous Electrolyte Solutions with the e-CPA Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 18693-18704	3.9	2
277	Heat Capacities of Fluids: The Performance of Various Equations of State. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 5654-5676	2.8	6
276	Gas Solubility in Ionic Liquids: UNIFAC-IL Model Extension. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16805-16821	3.9	11
275	Comparison of Two Types of Crossover Soave R edlich R wong Equations of State for Derivative Properties of n-Alkanes. <i>Industrial & Description of State for Derivative Properties of New York (1988)</i> 1 (2007) 1 (2008) 2	3.9	6

(2018-2019)

274	High-pressure experimental vapour-liquid-liquid equilibrium measurements and modelling for natural gas processing: Equipment validation, and the system CH4+nC6H14+H2O. <i>Fluid Phase Equilibria</i> , 2019 , 501, 112276	2.5	O	
273	High-pressure densities of n-decane+o-xylene mixtures: Measurement and modelling. <i>Fluid Phase Equilibria</i> , 2019 , 498, 1-8	2.5	1	
272	Sustainable solutions by integrating process synthesis-intensification. <i>Computers and Chemical Engineering</i> , 2019 , 126, 499-519	4	16	
271	Effect of the Composition of Biomass on the Quality of Syngas Produced from Thermochemical Conversion Based on Thermochemical Data Prediction. <i>Energy & Energy & Ene</i>	4.1	7	
270	Comparison of two crossover procedures for describing thermodynamic behavior of normal alkanes from singular critical to regular classical regions. <i>Fluid Phase Equilibria</i> , 2019 , 495, 33-46	2.5	5	
269	PII measurements and modelling of (n-decane + m-xylene) mixtures from 293.15 K to 363.15 K at pressures up to 60 MPa. <i>Journal of Chemical Thermodynamics</i> , 2019 , 135, 107-115	2.9	2	
268	Gas Adsorption and Interfacial Tension with Classical Density Functional Theory. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5650-5664	3.9	22	
267	Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7652-7666	8.3	10	
266	Integrated ionic liquid and process design involving azeotropic separation processes. <i>Chemical Engineering Science</i> , 2019 , 203, 402-414	4.4	25	
265	Taking Another Look at the van der Waals Equation of StateAlmost 150 Years Later. <i>Journal of Chemical & Chemi</i>	2.8	23	
264	Modeling of Gas Solubility Using the Electrolyte Cubic Plus Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 17555-17567	3.9	15	
263	Computer-aided design of ionic liquids for hybrid process schemes. <i>Computers and Chemical Engineering</i> , 2019 , 130, 106556	4	16	
262	Group Contribution Based Estimation Method for Properties of Ionic Liquids. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 4277-4292	3.9	31	
261	An Integrated Approach for the Design of Emulsified Products. AICHE Journal, 2019, 65, 75-86	3.6	12	
260	Modeling Tetra-n-butyl ammonium halides aqueous solutions with the electrolyte cubic plus association equation of state. <i>Fluid Phase Equilibria</i> , 2019 , 486, 37-47	2.5	10	
259	Modeling the phase behaviour of bitumen/n-alkane systems with the cubic plus association (CPA) equation of state. <i>Fluid Phase Equilibria</i> , 2019 , 486, 119-138	2.5	8	
258	Improvement of the PR-CPA equation of state for modelling of acid gases solubilities in aqueous alkanolamine solutions. <i>Fluid Phase Equilibria</i> , 2018 , 471, 74-87	2.5	15	
257	Extensive Study of the Capabilities and Limitations of the CPA and sPC-SAFT Equations of State in Modeling a Wide Range of Acetic Acid Properties. <i>Industrial & Discourse Chemistry Research</i> , 2018 , 57, 5690-5704	3.9	10	

256	Ternary VaporIliquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa. <i>Journal of Chemical & Data, 2018, 63, 1789-17</i>	9 2 .8	8
255	The Debye-Hikel theory and its importance in modeling electrolyte solutions. <i>Fluid Phase Equilibria</i> , 2018 , 462, 130-152	2.5	68
254	Systematic identification method for data analysis and phase equilibria modelling for lipids systems. <i>Journal of Chemical Thermodynamics</i> , 2018 , 121, 153-169	2.9	9
253	Design and Analysis of Edible Oil Processes Containing Lipids. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 737-742	0.6	1
252	Integrated Solvent-Membrane and Process Design Method for Hybrid Reaction-Separation Schemes. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 851-856	0.6	2
251	Exergy efficiency based design and analysis of utilization pathways of biomasses. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 857-862	0.6	3
250	Multicomponent Vapor Liquid Equilibrium Measurement and Modeling of Ethylene Glycol, Water, and Natural Gas Mixtures at 6 and 12.5 MPa. <i>Journal of Chemical & Data</i> , 2018, 63, 362	8 ⁻² 3639	, 5
249	Application of COSMO-RS and UNIFAC for ionic liquids based gas separation. <i>Chemical Engineering Science</i> , 2018 , 192, 816-828	4.4	40
248	New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis. <i>Fluid Phase Equilibria</i> , 2018 , 458, 211-233	2.5	8
247	eCPA: An ion-specific approach to parametrization. Fluid Phase Equilibria, 2018, 470, 176-187	2.5	15
246	Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology. <i>Fluid Phase Equilibria</i> , 2018 , 470, 249-258	2.5	7
245	Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures. <i>Journal of Chemical & Descripering Data</i> , 2018 , 63, 981-993	2.8	13
244	Integrated Ionic Liquid and Process Design involving Hybrid Separation Schemes. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 1045-1050	0.6	4
243	Thermodynamic Modeling of Relevance to Natural Gas Processing 2018 , 341-378		
242	Solubility of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. <i>Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. <i>Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. <i>Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. Industrial & Description of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. <i>Industrial & Description of Syngas Components and Syngas C</i></i></i></i>	3.9	1
241	Modeling Hydrofluoroolefins with the Cubic Plus Association and Perturbed-Chain Statistical Associating Fluid Theory Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 17289-17300	3.9	9
240	Recent advances with association models for practical applications. <i>Molecular Physics</i> , 2018 , 116, 1921-	19.44	6
239	Simultaneous Description of Activity Coefficients and Solubility with eCPA. <i>Industrial & amp;</i> Engineering Chemistry Research, 2017 , 56, 1074-1089	3.9	13

(2016-2017)

238	Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena. <i>Fluid Phase Equilibria</i> , 2017 , 437, 140-154	2.5	9
237	Prediction of Gas Injection Effect on Asphaltene Precipitation Onset Using the Cubic and Cubic-Plus-Association Equations of State. <i>Energy & Description of State (State)</i> 2017, 31, 3313-3328	4.1	14
236	Dimerization of Carboxylic Acids: An Equation of State Approach. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 2153-2163	3.4	16
235	Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2592-2605	2.8	11
234	Methods and Modelling for Post-combustion CO2 Capture 2017 , 43-78		
233	Modeling of Asphaltene Precipitation from Crude Oil with the Cubic Plus Association Equation of State. <i>Energy & Discourt State</i> (2017), 31, 2063-2075	4.1	18
232	Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems. <i>Energy Procedia</i> , 2017 , 129, 160-167	2.3	8
231	Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state. <i>Fluid Phase Equilibria</i> , 2016 , 408, 151-169	2.5	30
230	Hydrate equilibrium data for the CO2 + N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture. <i>Fluid Phase Equilibria</i> , 2016 , 408, 240-247	2.5	22
229	A collocation method for surface tension calculations with the density gradient theory. <i>Fluid Phase Equilibria</i> , 2016 , 408, 170-179	2.5	15
228	A comment on water structure using monomer fraction data and theories. Fluid Phase Equilibria, 2016 , 407, 2-6	2.5	17
227	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications. <i>Journal of Chemical Thermodynamics</i> , 2016 , 93, 305-319	2.9	11
226	Thermodynamics 2015 Conference Copenhagen, Denmark, 15¶8 September 2015. <i>Molecular Physics</i> , 2016 , 114, 2569-2573	1.7	2
225	Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State. <i>Energy & Equation</i> (PC-SAFT) Equations of Equations of State. <i>Energy </i>	4.1	43
224	Evaluation of the Cubic-Plus-Association Equation of State for Ternary, Quaternary, and Multicomponent Systems in the Presence of Monoethylene Glycol. <i>Industrial & Discourse in Chemistry Research</i> , 2016 , 55, 11371-11382	3.9	10
223	Modelling the phase equilibria of multicomponent mixtures containing CO2, alkanes, water, and/or alcohols using the quadrupolar CPA equation of state. <i>Molecular Physics</i> , 2016 , 114, 2641-2654	1.7	3
222	A density gradient theory based method for surface tension calculations. <i>Fluid Phase Equilibria</i> , 2016 , 428, 153-163	2.5	27
221	Modeling of phase equilibrium of North Sea oils with water and MEG. <i>Fluid Phase Equilibria</i> , 2016 , 424, 79-89	2.5	1

220	Uncertainty analysis of the CPA and a quadrupolar CPA equation of state IWith emphasis on CO2. <i>Fluid Phase Equilibria</i> , 2016 , 414, 29-47	2.5	9
219	Phase Equilibrium Measurements and Modeling of 1-Propanethiol +1-Butanethiol + CH4 in Methane Ternary System at 303, 336, and 368 K and Pressure Up to 9 MPa. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 41-44	2.8	1
218	Phase equilibrium of North Sea oils with polar chemicals: Experiments and CPA modeling. <i>Fluid Phase Equilibria</i> , 2016 , 424, 122-136	2.5	2
217	Hydrate Equilibrium Data for CO2+N2 System in the Presence of Tetra-n-butylammonium Fluoride (TBAF) and Mixture of TBAF and Cyclopentane (CP). <i>Journal of Chemical & Data</i> , 2016, 61, 1007-1011	2.8	6
216	Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation Using the Cubic-Plus-Association Equation of State. <i>Energy & Energy & </i>	4.1	23
215	Pitfalls of using the geometric-mean combining rule in the density gradient theory. <i>Fluid Phase Equilibria</i> , 2016 , 415, 75-83	2.5	24
214	Modeling systems relevant to the biodiesel production using the CPA equation of state. <i>Fluid Phase Equilibria</i> , 2016 , 430, 75-92	2.5	17
213	Introduction to Colloid and Surface Chemistry 2016 , 1-10		
212	Colloid Stability [Part I 2016 , 211-242		
211	Colloid Stability (Part II 2016 , 243-268		
210	Emulsions 2016 , 269-282		
209	Foams 2016 , 283-302		
208	Multicomponent Adsorption 2016 , 303-320		
207	Sixty Years with Theories for Interfacial Tension Quo Vadis? 2016 , 321-351		1
206	Epilogue and Review Problems 2016 , 352-357		
205	Intermolecular and Interparticle Forces 2016 , 11-33		1
204	Surface and Interfacial Tensions Principles and Estimation Methods 2016 , 34-73		
203	Fundamental Equations in Colloid and Surface Science 2016 , 74-95		

202 Surfactants and Self-assembly. Detergents and Cleaning **2016**, 96-120

201	Wetting and Adhesion 2016 , 121-160		1
200	Adsorption in Colloid and Surface Science 🖪 Universal Concept 2016 , 161-184		
199	Characterization Methods of Colloids Part I 2016 , 185-201		
198	Characterization Methods of Colloids [Part II 2016 , 202-210		
197	Cubic Plus Association Equation of State for Flow Assurance Projects. <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description of State for Flow Assurance Projects</i> . <i>Industrial & Description </i>	3.9	10
196	Modeling the liquid I quid equilibrium of petroleum fluid and polar compounds containing systems with the PC-SAFT equation of state. Fluid Phase Equilibria, 2015, 406, 147-155	2.5	18
195	Measurement of vaporllquidllquid phase equilibriumllquipment and results. <i>Fluid Phase Equilibria</i> , 2015 , 405, 88-95	2.5	6
194	Multicomponent Adsorption Model for Polar and Associating Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 3039-3050	3.9	7
193	An electrolyte CPA equation of state for mixed solvent electrolytes. <i>AICHE Journal</i> , 2015 , 61, 2933-2950) 3.6	59
192	Determination of asphaltene onset conditions using the cubic plus association equation of state. <i>Fluid Phase Equilibria</i> , 2015 , 400, 8-19	2.5	39
191	Modeling MEA with the CPA equation of state: A parameter estimation study adding local search to PSO algorithm. <i>Fluid Phase Equilibria</i> , 2015 , 400, 76-86	2.5	5
190	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. <i>Fluid Phase Equilibria</i> , 2015 , 397, 1-17	2.5	17
189	Characterization Scheme for Property Prediction of Fluid Fractions Originating from Biomass. <i>Energy & Description of Energy &</i>	4.1	3
188	Modeling Water Saturation Points in Natural Gas Streams Containing CO2 and H2Stomparisons with Different Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 743-757	3.9	4
187	Thermodynamics of Polymer Solutions 2015 , 199-246		
186	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. <i>Journal of Supercritical Fluids</i> , 2015 , 104, 29-39	4.2	14
185	The role of chemical engineering in medicinal research including Alzheimer's. <i>Advances in Experimental Medicine and Biology</i> , 2015 , 821, 57-62	3.6	1

184	New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. <i>Industrial & Equation of State and St</i>	3.9	18
183	Vapor l iquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling. <i>Journal of Chemical & Data, 2014, 59, 961-967</i>	2.8	35
182	A comprehensive framework for surfactant selection and design for emulsion based chemical product design. <i>Fluid Phase Equilibria</i> , 2014 , 362, 288-299	2.5	60
181	Development and analysis of the Original UNIFAC-CI model for prediction of vaporliquid and solidliquid equilibria. <i>Fluid Phase Equilibria</i> , 2014 , 366, 24-44	2.5	6
180	Modeling Water Containing Systems with the Simplified PC-SAFT and CPA Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14493-14507	3.9	65
179	Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport. <i>Journal of Chemical &</i> Engineering Data, 2014 , 59, 2955-2972	2.8	18
178	Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water. <i>Fluid Phase Equilibria</i> , 2014 , 372, 113-125	2.5	16
177	Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11766-11778	3.9	9
176	Distribution of Gas Hydrate Inhibitor Monoethylene Glycol in Condensate and Water Systems: Experimental Measurement and Thermodynamic Modeling Using the Cubic-Plus-Association Equation of State. <i>Energy & Fuels</i> , 2014 , 28, 3530-3538	4.1	9
175	The Virtual Product-Process Design Laboratory for Structured Chemical Product Design and Analysis. <i>Computer Aided Chemical Engineering</i> , 2014 , 61-66	0.6	7
174	On the predictive capabilities of CPA for applications in the chemical industry: Multicomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid. <i>Chemical Engineering Research and Design</i> , 2014 , 92, 2947-2969	5.5	12
173	On petroleum fluid characterization with the PC-SAFT equation of state. <i>Fluid Phase Equilibria</i> , 2014 , 375, 254-268	2.5	35
172	The role of monomer fraction data in association theories an we improve the performance for phase equilibrium calculations?. Fluid Phase Equilibria, 2014, 365, 112-122	2.5	13
171	Association theories for complex thermodynamics. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 1840-1858	5.5	29
170	Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 12236-12246	3.9	32
169	Modeling of dielectric properties of aqueous salt solutions with an equation of state. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10523-33	3.4	56
168	Prediction of the vaporliquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state. <i>Fluid Phase Equilibria</i> , 2013 , 360, 222-232	2.5	36
167	Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. <i>Journal of Supercritical Fluids</i> , 2013 , 84, 155-163	3 ^{4.2}	3

166	Capabilities and Limitations of Predictive Engineering Theories for Multicomponent Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11552-11563	3.9	30	
165	Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS. <i>Fluid Phase Equilibria</i> , 2013 , 337, 298-310	2.5	14	
164	Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium. <i>Journal of Supercritical Fluids</i> , 2013 , 82, 106-115	4.2	7	
163	Prediction of Thermophysical Properties of Liquid Formulated Products 2013 , 121-151		1	
162	Modeling of dielectric properties of complex fluids with an equation of state. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 3389-97	3.4	39	
161	Potential Theory of Adsorption for Associating Mixtures: Possibilities and Limitations. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 2672-2684	3.9	26	
160	Thermodynamic Modeling of Natural Gas Systems Containing Water. <i>Industrial & amp; Engineering Chemistry Research</i> , 2013 , 52, 3499-3513	3.9	23	
159	GC-PPC-SAFT Equation of State for VLE and LLE of Hydrocarbons and Oxygenated Compounds. Sensitivity Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7014-7029	3.9	20	
158	Liquid II quid equilibria for reservoir fluids + monoethylene glycol and reservoir fluids + monoethylene glycol + water: Experimental measurements and modeling using the CPA EoS. Fluid Phase Equilibria, 2013, 340, 1-6	2.5	13	
157	Vaporliquidliquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water, 1-Propanethiol + Methane + Water and 1-Butanethiol + Methane + Water Ternary Systems at 303, 335, and 365 K and Pressure Up to 9 MPa. <i>Industrial & Engineering Chemistry Research</i> , 2013,	3.9	5	
156	Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology. <i>Computer Aided Chemical Engineering</i> , 2013 , 32, 817-822	0.6	5	
155	Selective oxidation of benzyl alcohol in dense CO2: Insight by phase behavior modeling. <i>Journal of Supercritical Fluids</i> , 2012 , 63, 199-207	4.2	11	
154	Thirty Years with EoS/GEModels What Have We Learned?. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2012 , 51, 4119-4142	3.9	54	
153	Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13496-13517	3.9	17	
152	Approach to Improve Speed of Sound Calculation within PC-SAFT Framework. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14903-14914	3.9	55	
151	Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide. <i>Journal of Chemical & Data</i> , 2012, 57, 896-901	2.8	8	
150	Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. <i>Fluid Phase Equilibria</i> , 2012 , 332, 128-143	2.5	74	
149	Vaporlliquidliquid Equilibrium Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K. <i>Industrial & Engineering Chemistry Research</i> , 2012 51, 11561-11564	3.9	7	

148	Application of Simplified PC-SAFT to Glycol Ethers. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 547-555	3.9	18
147	Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide. <i>Applied Catalysis A: General</i> , 2012 , 443-444, 67-75	5.1	6
146	Comparison of the Debyellickel and the Mean Spherical Approximation Theories for Electrolyte Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 5353-5363	3.9	56
145	Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives. <i>Carbohydrate Polymers</i> , 2012 , 87, 444-451	10.3	33
144	Experimental study and phase equilibrium modeling of systems containing acid gas and glycol. <i>Fluid Phase Equilibria</i> , 2012 , 318, 40-50	2.5	19
143	A Systematic Methodology for Design of Emulsion Based Chemical Products. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 220-224	0.6	15
142	Measurement of LiquidLiquid Equilibria for Condensate + Glycol and Condensate + Glycol + Water Systems. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 4342-4351	2.8	13
141	Modeling of the Thermodynamics of the Acetic AcidWater Mixture Using the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 57	′9 3 -380)5 ²⁰
140	Lipid Processing Technology: Building a Multilevel Modeling Network. <i>Computer Aided Chemical Engineering</i> , 2011 , 29, 256-260	0.6	3
139	Experimental determination and modeling of the phase behavior for the selective oxidation of benzyl alcohol in supercritical CO2. <i>Fluid Phase Equilibria</i> , 2011 , 302, 83-92	2.5	10
138	Analysis and application of GCPlus models for property prediction of organic chemical systems. <i>Fluid Phase Equilibria</i> , 2011 , 302, 274-283	2.5	8
137	Mutual solubility of MEG, water and reservoir fluid: Experimental measurements and modeling using the CPA equation of state. <i>Fluid Phase Equilibria</i> , 2011 , 300, 172-181	2.5	16
136	Towards predictive association theories. Fluid Phase Equilibria, 2011, 301, 244-256	2.5	22
135	Modeling of phase equilibria with CPA using the homomorph approach. <i>Fluid Phase Equilibria</i> , 2011 , 301, 1-12	2.5	16
134	Application of association models to mixtures containing alkanolamines. <i>Fluid Phase Equilibria</i> , 2011 , 306, 31-37	2.5	10
133	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2. <i>Fluid Phase Equilibria</i> , 2011 , 306, 38-56	2.5	131
132	Partition coefficients of organic molecules in squalane and water/ethanol mixtures by molecular dynamics simulations. <i>Fluid Phase Equilibria</i> , 2011 , 306, 162-170	2.5	2
131	Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. <i>Journal of Supercritical Fluids</i> , 2011 , 55, 876-892	4.2	60

130	Intramolecular association within the SAFT framework. <i>Molecular Physics</i> , 2011 , 109, 1759-1769	1.7	21
129	An Explanation of the Selective Plating of Laser Machined Surfaces Using Surface Tension Components. <i>Journal of Adhesion Science and Technology</i> , 2011 , 25, 2101-2111	2	14
128	Industrial Requirements for Thermodynamics and Transport Properties. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11131-11141	3.9	186
127	Phase Equilibria of Mixtures Containing Organic Sulfur Species (OSS) and Water/Hydrocarbons: VLE Measurements and Modeling Using the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12718-12725	3.9	7
126	Absorber Model for CO2 Capture by Monoethanolamine. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 3751-3759	3.9	41
125	Chemicals in Gas Processing (CHIGP) 2010 , 419-426		
124	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. <i>AICHE Journal</i> , 2010 , 56, 2965-2982	3.6	103
123	Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state. <i>Fluid Phase Equilibria</i> , 2010 , 288, 128-138	2.5	27
122	Use of monomer fraction data in the parametrization of association theories. <i>Fluid Phase Equilibria</i> , 2010 , 296, 219-229	2.5	49
121	Equations of state: From the ideas of van der Waals to association theories. <i>Journal of Supercritical Fluids</i> , 2010 , 55, 421-437	4.2	41
120	Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydridehodified hyaluronic acid derivatives. <i>Carbohydrate Polymers</i> , 2010 , 79, 597-605	10.3	52
119	2010,		231
0			
118	Modeling the solidIquid equilibrium in pharmaceutical-solvent mixtures: Systems with complex hydrogen bonding behavior. <i>AICHE Journal</i> , 2009 , 55, 756-770	3.6	28
118		3.6 2.5	28
	hydrogen bonding behavior. <i>AICHE Journal</i> , 2009 , 55, 756-770 Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous		
117	hydrogen bonding behavior. <i>AICHE Journal</i> , 2009 , 55, 756-770 Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions. <i>Fluid Phase Equilibria</i> , 2009 , 282, 121-132 Thermodynamic modeling of the solubility of CO2 in aqueous alkanolamine solutions using the extended UNIQUAC model application to monoethanolamine and methyldiethanolamine. <i>Energy</i>	2.5	81
117	hydrogen bonding behavior. <i>AICHE Journal</i> , 2009 , 55, 756-770 Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions. <i>Fluid Phase Equilibria</i> , 2009 , 282, 121-132 Thermodynamic modeling of the solubility of CO2 in aqueous alkanolamine solutions using the extended UNIQUAC model application to monoethanolamine and methyldiethanolamine. <i>Energy Procedia</i> , 2009 , 1, 861-867 Application of the CPA equation of state to reservoir fluids in presence of water and polar	2.5	81

112	Analysis and applications of a group contribution sPC-SAFT equation of state. <i>Fluid Phase Equilibria</i> , 2009 , 281, 60-69	2.5	25
111	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chain-Statistical Associating Fluid Theory (sPC-SAFT). 2. Liquid Liquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems. <i>Industrial & Description of Monomer Fraction in Hydrogen Bonding Systems</i> .	3.9	2
110	Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5472-5480	3.9	26
109	Phase Equilibria of Mixtures Containing Glycol and n-Alkane: Experimental Study of Infinite Dilution Activity Coefficients and Modeling Using the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 11202-11210	3.9	17
108	Modeling the phase behavior in mixtures of pharmaceuticals with liquid or supercritical solvents. Journal of Physical Chemistry B, 2009 , 113, 6446-58	3.4	43
107	Modeling of the migration of glycerol monoester plasticizers in highly plasticized poly(vinyl chloride). <i>Journal of Vinyl and Additive Technology</i> , 2009 , 15, 147-158	2	11
106	A Predictive Group-Contribution Simplified PC-SAFT Equation of State: Application to Polymer Systems. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 5092-5101	3.9	134
105	Phase Equilibrium Modelling for Mixtures with Acetic Acid Using an Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 5660-5668	3.9	28
104	Modeling Systems Containing Alkanolamines with the CPA Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 7441-7446	3.9	41
103	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-ChainBtatistical Associating Fluid Theory (sPC-SAFT). 1. VaporIliquid Equilibria. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 5636-5650	3.9	59
102	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chain Italistical Associating Fluid Theory (sPC-SAFT). 2. Liquid Iiquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008, 47, 5651-5659	3.9	57
101	Thermodynamics of Polymer Solutions 2008 , 499-537		
100	Modelling of phase equilibria of glycol ethers mixtures using an association model. <i>Fluid Phase Equilibria</i> , 2008 , 273, 11-20	2.5	16
99	Adsorption of amylase enzyme on ultrafiltration membranes. <i>Langmuir</i> , 2007 , 23, 9341-51	4	37
98	Comments on Measurement and Modeling of the Solubility of Water in Supercritical Methane and Ethane from 310 to 477 K and Pressures from 3.4 to 110 MPa\(\textit{Industrial & amp; Engineering Chemistry Research, 2007, 46, 4347-4348}\)	3.9	2
97	Modeling the Liquid Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 1415-1420	3.9	19
96	Data and prediction of water content of high pressure nitrogen, methane and natural gas. <i>Fluid Phase Equilibria</i> , 2007 , 252, 162-174	2.5	66
95	Re: A.H. Mohammadi and D. Richon on Data and prediction of water content of high pressure nitrogen, methane and natural gasl[Fluid Phase Equilibria 252 (2007) 162[174]. Fluid Phase Equilibria 2007, 255, 98	2.5	1

(2006-2007)

94	Application of PC-SAFT to glycol containing systems IPC-SAFT towards a predictive approach. <i>Fluid Phase Equilibria</i> , 2007 , 261, 248-257	2.5	36	
93	Experimental validation of a rate-based model for CO2 capture using an AMP solution. <i>Chemical Engineering Science</i> , 2007 , 62, 2397-2413	4.4	78	
92	Measurement and modelling of hydrogen bonding in 1-alkanol+n-alkane binary mixtures. <i>Fluid Phase Equilibria</i> , 2007 , 261, 272-280	2.5	28	
91	Modelling of associating mixtures for applications in the oil & gas and chemical industries. <i>Fluid Phase Equilibria</i> , 2007 , 261, 205-211	2.5	34	
90	Adhesion between coating layers based on epoxy and silicone. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 678-86	9.3	22	
89	High-pressure vaporlīquid equilibria of systems containing ethylene glycol, water and methane. <i>Fluid Phase Equilibria</i> , 2007 , 251, 52-58	2.5	48	
88	Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters. <i>Fluid Phase Equilibria</i> , 2007 , 258, 83-94	2.5	65	
87	Classical and recent free-volume models for polymer solutions: A comparative evaluation. <i>Fluid Phase Equilibria</i> , 2007 , 257, 63-69	2.5	16	
86	Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling. <i>Molecular Simulation</i> , 2007 , 33, 851-860	2	14	
85	On the estimation of water pure compound parameters in association theories. <i>Molecular Physics</i> , 2007 , 105, 1797-1801	1.7	18	
84	The Hansen Solubility Parameters (HSP) in Thermodynamic Models for Polymer Solutions 2007 , 75-94		3	
83	Capabilities, limitations and challenges of a simplified PC-SAFT equation of state. <i>Fluid Phase Equilibria</i> , 2006 , 241, 344-353	2.5	41	
82	Modeling of CO2 absorber using an AMP solution. AICHE Journal, 2006, 52, 3443-3451	3.6	69	
81	Evaluation of the Truncated Perturbed Chain-Polar Statistical Associating Fluid Theory for Complex Mixture Fluid Phase Equilibria. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6063-6074	3.9	64	
80	Comparison of Two Association Models (ElliottBureshDonohue and Simplified PC-SAFT) for Complex Phase Equilibria of HydrocarbonWater and Amine-Containing Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8170-8179	3.9	60	
79	Application of the Cubic-Plus-Association Equation of State to Mixtures with Polar Chemicals and High Pressures. <i>Industrial & Discourse and Chemistry Research</i> , 2006 , 45, 1516-1526	3.9	57	
78	Liquid Liquid Equilibria for Binary and Ternary Systems Containing Glycols, Aromatic Hydrocarbons, and Water: Experimental Measurements and Modeling with the CPA EoS. <i>Journal of Chemical & Engineering Data</i> , 2006, 51, 977-983	2.8	42	
77	Application of the Cubic-Plus-Association (CPA) Equation of State to Complex Mixtures with Aromatic Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1527-1538	3.9	97	

76	Thermodynamic Modeling of Acidic Gas Solubility in Aqueous Solutions of MEA, MDEA and MEAMDEA Blends. <i>Industrial & Description Chemistry Research</i> , 2006 , 45, 5148-5154	3.9	40
75	Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and Multicomponent Systems. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4869-4878	3.9	189
74	Approach Suitable for Screening Estimation Methods for Critical Properties of Heavy Compounds. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 476-480	3.9	25
73	Investigating Models for Associating Fluids Using Spectroscopy. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 5368-5374	3.9	51
72	Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR. <i>Fluid Phase Equilibria</i> , 2006 , 243, 74-91	2.5	30
71	Applications of the simplified perturbed-chain SAFT equation of state using an extended parameter table. <i>Fluid Phase Equilibria</i> , 2006 , 248, 29-43	2.5	120
70	Comparison of the SRK and CPA equations of state for physical properties of water and methanol. <i>Fluid Phase Equilibria</i> , 2006 , 247, 149-157	2.5	38
69	Vaporllquid, liquidllquid and vaporllquidllquid equilibrium of binary and multicomponent systems with MEG. <i>Fluid Phase Equilibria</i> , 2006 , 249, 67-74	2.5	41
68	Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4855-4868	3.9	301
67	A Model for Estimating CO2 Solubility in Aqueous Alkanolamines. <i>Industrial & Description of the Mistry Research</i> , 2005 , 44, 3348-3354	3.9	117
66	Comments on P redictions of Activity Coefficients of Nearly Athermal Binary Mixtures Using Cubic Equations of State (Industrial & Comments of State (Industri	3.9	5
65	Correlation and Prediction of Environmental Properties of Alcohol Ethoxylate Surfactants Using the UNIFAC Method. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7255-7261	3.9	12
64	Extension of the Cubic-plus-Association (CPA) Equation of State to Amines. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4406-4413	3.9	38
63	Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3823-3833	3.9	114
62	Prediction and Correlation of High-Pressure Gas Solubility in Polymers with Simplified PC-SAFT. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3330-3335	3.9	34
61	Modeling vapor Ilquid interfaces with the gradient theory in combination with the CPA equation of state. Fluid Phase Equilibria, 2005, 228-229, 479-485	2.5	52
60	Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems. <i>Fluid Phase Equilibria</i> , 2005 , 228-229, 121-126	2.5	35
59	A modified free-volume-based model for predicting vaporliquid and solidliquid equilibria for size asymmetric systems. Fluid Phase Equilibria, 2005 , 234, 94-100	2.5	16

(2003-2004)

58	Equations of State with Emphasis on Excess Gibbs Energy Mixing Rules. <i>Computer Aided Chemical Engineering</i> , 2004 , 75-111	0.6	1
57	Chapter 14: Application of Property Models in Chemical Product Design. <i>Computer Aided Chemical Engineering</i> , 2004 , 339-369	0.6	1
56	Challenges and Opportunities for Property Modeling. <i>Computer Aided Chemical Engineering</i> , 2004 , 19, 407-416	0.6	
55	Application of the perturbed chain SAFT equation of state to complex polymer systems using simplified mixing rules. <i>Fluid Phase Equilibria</i> , 2004 , 215, 71-78	2.5	46
54	Applying Association Theories to Polar Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 1803-1806	3.9	48
53	Modeling of multicomponent vaporliquid equilibria for polymerBolvent systems. <i>Fluid Phase Equilibria</i> , 2004 , 220, 11-20	2.5	17
52	A novel approach to liquid I quid equilibrium in polymer systems with application to simplified PC-SAFT. <i>Fluid Phase Equilibria</i> , 2004 , 222-223, 87-93	2.5	27
51	Application of the CPA equation of state to organic acids. Fluid Phase Equilibria, 2004, 225, 107-113	2.5	50
50	Chapter 6: Association Models IThe CPA Equation of State. <i>Computer Aided Chemical Engineering</i> , 2004 , 19, 113-142	0.6	О
49	Introduction to Computer Aided Property Estimation. <i>Computer Aided Chemical Engineering</i> , 2004 , 19, 3-26	0.6	10
48	Novel Method for Estimating Pure-Component Parameters for Polymers: Application to the PC-SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2830-2838	3.9	49
47	Liquid Liquid Equilibria for Binary and Ternary Polymer Solutions with PC-SAFT. <i>Industrial & amp;</i> Engineering Chemistry Research, 2004 , 43, 1125-1132	3.9	31
46	Models for Polymer Solutions. Computer Aided Chemical Engineering, 2004, 19, 143-179	0.6	О
45	Application of the Simplified PC-SAFT Equation of State to the Vaporliquid Equilibria of Binary and Ternary Mixtures of Polyamide 6 with Several Solvents. <i>Industrial & Discrete Manage of Polyamide Research</i> , 2004 , 43, 826-834	3.9	33
44	Extension of the Cubic-Plus-Association Equation of State to GlycollWater Cross-Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1470-1477	3.9	86
43	Prediction of solidgas equilibria with the PengRobinson equation of state. <i>Journal of Supercritical Fluids</i> , 2003 , 25, 197-212	4.2	46
42	Application of the CPA equation of state to glycol/hydrocarbons liquid l iquid equilibria. <i>Fluid Phase Equilibria</i> , 2003 , 209, 163-184	2.5	72
41	Prediction of gas solubilities in elastomeric polymers for the design of thermopane windows. <i>Fluid Phase Equilibria</i> , 2003 , 211, 17-33	2.5	12

40	Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1098	-1∮ 0 5	225
39	Phase equilibria for complex polymer solutions. Fluid Phase Equilibria, 2002, 194-197, 663-673	2.5	13
38	An improved entropic expression for polymer solutions. Fluid Phase Equilibria, 2002, 202, 325-335	2.5	24
37	A FloryHuggins model based on the Hansen solubility parameters. <i>Fluid Phase Equilibria</i> , 2002 , 203, 247-260	2.5	214
36	A Comment on Guggenheim-like Hard-Core Volume Expressions. <i>Industrial & Discrete Managering Chemistry Research</i> , 2002 , 41, 4686-4688	3.9	2
35	Prediction of Micelle Formation for Aqueous Polyoxyethylene Alcohol Solutions with the UNIFAC Model. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 892-898	3.9	17
34	Liquid Diquid Equilibria for Glycols + Hydrocarbons: Data and Correlation. <i>Journal of Chemical & Engineering Data</i> , 2002 , 47, 169-173	2.8	45
33	Thermodynamics of Polymer Solutions 2002 ,		1
32	Thermodynamics of paint-related systems with engineering models. <i>AICHE Journal</i> , 2001 , 47, 2573-258	343.6	24
31	Application of Group Contribution Models to the Calculation of the Octanol Water Partition Coefficient. <i>Industrial & Data Barage Chemistry Research</i> , 2001 , 40, 434-443	3.9	16
30	An interpretation of the behavior of EoS/GE models for asymmetric systems. <i>Chemical Engineering Science</i> , 2000 , 55, 2351-2358	4.4	30
29	General Form of the Cross-Energy Parameter of Equations of State. <i>Industrial & Description of Chemistry Research</i> , 2000 , 39, 3076-3082	3.9	22
28	Multicomponent phase equilibrium calculations for water the than old lkane mixtures. Fluid Phase Equilibria, 1999, 158-160, 201-209	2.5	251
27	Assessment of Activity Coefficient Models for Predicting Solidliquid Equilibria of Asymmetric Binary Alkane Systems. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 316-323	3.9	19
26	A novel method for investigating the repulsive and attractive parts of cubic equations of state and the combining rules used with the vdW-1f theory. <i>Chemical Engineering Science</i> , 1998 , 53, 541-552	4.4	21
25	Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State. <i>Industrial & Description of State and Research</i> , 1998 , 37, 4175-4182	3.9	105
24	Method for Estimating Critical Properties of Heavy Compounds Suitable for Cubic Equations of State and Its Application to the Prediction of Vapor Pressures. <i>Industrial & Discourse Engineering Chemistry Research</i> , 1997 , 36, 4008-4012	3.9	14
23	Prediction of Ternary Liquid[liquid Equilibria in PolymerBolventBolvent Systems. <i>Industrial</i>	3.9	12

22	Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications. A critical review. <i>Chemical Engineering Journal</i> , 1997 , 66, 35-49	14.7	36
21	Improved models for the prediction of activity coefficients in nearly athermal mixtures Part II. A theoretically-based GE-model based on the van der Waals partition function. <i>Fluid Phase Equilibria</i> , 1997 , 127, 103-121	2.5	26
20	Correlation of liquid-liquid equilibria for alcoholhydrocarbon mixtures using the CPA equation of state. <i>Fluid Phase Equilibria</i> , 1997 , 132, 61-75	2.5	60
19	Vapor-liquid equilibria for systems using the CPA Equation of state. <i>Fluid Phase Equilibria</i> , 1997 , 130, 31-47	2.5	112
18	A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area. <i>Fluid Phase Equilibria</i> , 1997 , 140, 145-156	2.5	11
17	An Equation of State for Associating Fluids. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 4310-4318	3.9	667
16	Miscibility of polymer blends with engineering models. AICHE Journal, 1996, 42, 3170-3180	3.6	17
15	A molecular simulation-based method for the estimation of activity coefficients for alkane solutions. <i>Chemical Engineering Science</i> , 1996 , 51, 3247-3255	4.4	10
14	Application of the van der Waals equation of state to polymers IV. Correlation and prediction of lower critical solution temperatures for polymer solutions. <i>Fluid Phase Equilibria</i> , 1996 , 115, 73-93	2.5	24
13	Application of the LCVM model to systems containing organic compounds and supercritical carbon dioxide. <i>Journal of Supercritical Fluids</i> , 1996 , 9, 88-98	4.2	33
12	Henry constants in polymer solutions with the van der waals equation of state. <i>Polymer Engineering and Science</i> , 1996 , 36, 254-261	2.3	4
11	Chain length dependence of the critical density of organic homologous series. <i>Fluid Phase Equilibria</i> , 1995 , 108, 47-58	2.5	7
10	Prediction of Liquid-Liquid Equilibrium for Binary Polymer Solutions with Simple Activity Coefficient Models. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 1823-1834	3.9	39
9	Correlation and prediction of Henry constants for liquids and gases in five industrially important polymers using a CS-type correlation based on the van der Waals equation of state. Comparison with other predictive models. <i>Fluid Phase Equilibria</i> , 1995 , 113, 79-102	2.5	8
8	Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state. <i>Fluid Phase Equilibria</i> , 1994 , 102, 31-60	2.5	76
7	Equations of state and activity coefficient models for vapor-liquid equilibria of polymer solutions. <i>AICHE Journal</i> , 1994 , 40, 1711-1727	3.6	25
6	Application of the van der Waals equation of state to polymers III. Correlation and prediction of upper critical solution temperatures for polymer solutions. <i>Fluid Phase Equilibria</i> , 1994 , 100, 63-102	2.5	23
5	Improved models for the prediction of activity coefficients in nearly athermal mixtures: Part I. Empirical modifications of free-volume models. <i>Fluid Phase Equilibria</i> , 1994 , 92, 35-66	2.5	36

4	Application of the van der Waals equation of state to polymers. Fluid Phase Equilibria, 1994 , 96, 65-92	2.5	53
3	Application of the van der Waals equation of state to polymers. Fluid Phase Equilibria, 1994 , 96, 93-117	2.5	26
2	Simple activity coefficient model for the prediction of solvent activities in polymer solutions. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 362-372	3.9	125
1	Optimal Aqueous Biphasic Systems Design for the Recovery of Ionic Liquids. <i>Industrial & amp;</i> Engineering Chemistry Research,	3.9	2