
Georgios M Kontogeorgis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5807048/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Equation of State for Associating Fluids. Industrial & Engineering Chemistry Research, 1996, 35, 4310-4318.	3.7	829
2	Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. Industrial & Engineering Chemistry Research, 2006, 45, 4855-4868.	3.7	374
3	Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Phase Equilibria, 1999, 158-160, 201-209.	2.5	306
4	A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 2002, 203, 247-260.	2.5	275
5	Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures. Industrial & Engineering Chemistry Research, 2003, 42, 1098-1105.	3.7	261
6	Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and Multicomponent Systems. Industrial & Engineering Chemistry Research, 2006, 45, 4869-4878.	3.7	217
7	Industrial Requirements for Thermodynamics and Transport Properties. Industrial & Engineering Chemistry Research, 2010, 49, 11131-11141.	3.7	211
8	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2. Fluid Phase Equilibria, 2011, 306, 38-56.	2.5	164
9	A Predictive Group-Contribution Simplified PC-SAFT Equation of State: Application to Polymer Systems. Industrial & Engineering Chemistry Research, 2008, 47, 5092-5101.	3.7	160
10	Simple activity coefficient model for the prediction of solvent activities in polymer solutions. Industrial & Engineering Chemistry Research, 1993, 32, 362-372.	3.7	149
11	Applications of the simplified perturbed-chain SAFT equation of state using an extended parameter table. Fluid Phase Equilibria, 2006, 248, 29-43.	2.5	142
12	Vapor-liquid equilibria for systems using the CPA Equation of state. Fluid Phase Equilibria, 1997, 130, 31-47.	2.5	130
13	The Debye-Hückel theory and its importance in modeling electrolyte solutions. Fluid Phase Equilibria, 2018, 462, 130-152.	2.5	130
14	A Model for Estimating CO2 Solubility in Aqueous Alkanolamines. Industrial & Engineering Chemistry Research, 2005, 44, 3348-3354.	3.7	129
15	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H ₂ S. AICHE Journal, 2010, 56, 2965-2982.	3.6	129
16	Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems. Industrial & Engineering Chemistry Research, 2005, 44, 3823-3833.	3.7	128
17	Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State. Industrial & Engineering Chemistry Research, 1998, 37, 4175-4182.	3.7	113
18	Application of the Cubic-Plus-Association (CPA) Equation of State to Complex Mixtures with Aromatic Hydrocarbons. Industrial & Engineering Chemistry Research, 2006, 45, 1527-1538.	3.7	109

#	Article	IF	CITATIONS
19	Extension of the Cubic-Plus-Association Equation of State to Glycolâ^'Water Cross-Associating Systems. Industrial & Engineering Chemistry Research, 2003, 42, 1470-1477.	3.7	99
20	An electrolyte CPA equation of state for mixed solvent electrolytes. AICHE Journal, 2015, 61, 2933-2950.	3.6	92
21	Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions. Fluid Phase Equilibria, 2009, 282, 121-132.	2.5	91
22	Industrial Requirements for Thermodynamic and Transport Properties: 2020. Industrial & Engineering Chemistry Research, 2021, 60, 4987-5013.	3.7	90
23	Experimental validation of a rate-based model for CO2 capture using an AMP solution. Chemical Engineering Science, 2007, 62, 2397-2413.	3.8	88
24	Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state. Fluid Phase Equilibria, 1994, 102, 31-60.	2.5	86
25	Application of the CPA equation of state to glycol/hydrocarbons liquid–liquid equilibria. Fluid Phase Equilibria, 2003, 209, 163-184.	2.5	85
26	Modeling Water Containing Systems with the Simplified PC-SAFT and CPA Equations of State. Industrial & Engineering Chemistry Research, 2014, 53, 14493-14507.	3.7	84
27	Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilibria, 2012, 332, 128-143.	2.5	82
28	Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters. Fluid Phase Equilibria, 2007, 258, 83-94.	2.5	80
29	Comparison of the Debye–HÃ1⁄4ckel and the Mean Spherical Approximation Theories for Electrolyte Solutions. Industrial & Engineering Chemistry Research, 2012, 51, 5353-5363.	3.7	77
30	Modeling of CO2 absorber using an AMP solution. AICHE Journal, 2006, 52, 3443-3451.	3.6	76
31	Data and prediction of water content of high pressure nitrogen, methane and natural gas. Fluid Phase Equilibria, 2007, 252, 162-174.	2.5	75
32	Evaluation of the Truncated Perturbed Chain-Polar Statistical Associating Fluid Theory for Complex Mixture Fluid Phase Equilibria. Industrial & Engineering Chemistry Research, 2006, 45, 6063-6074.	3.7	73
33	Comparison of Two Association Models (Elliottâ^'Sureshâ^'Donohue and Simplified PC-SAFT) for Complex Phase Equilibria of Hydrocarbonâ 'Water and Amine-Containing Mixtures. Industrial & Engineering Chemistry Research, 2006, 45, 8170-8179.	3.7	73
34	Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State. Journal of Physical Chemistry B, 2013, 117, 10523-10533.	2.6	73
35	A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 2014, 362, 288-299.	2.5	72
36	Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 2011, 55, 876-892.	3.2	71

#	Article	IF	CITATIONS
37	Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride–modified hyaluronic acid derivatives. Carbohydrate Polymers, 2010, 79, 597-605.	10.2	70
38	Application of the Cubic-Plus-Association Equation of State to Mixtures with Polar Chemicals and High Pressures. Industrial & amp; Engineering Chemistry Research, 2006, 45, 1516-1526.	3.7	69
39	Correlation of liquid-liquid equilibria for mixtures using the CPA equation of state. Fluid Phase Equilibria, 1997, 132, 61-75.	2.5	68
40	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chainâ^'Statistical Associating Fluid Theory (sPC-SAFT). 1. Vaporâ^'Liquid Equilibria. Industrial & Engineering Chemistry Research, 2008, 47, 5636-5650.	3.7	68
41	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chainâ^'Statistical Associating Fluid Theory (sPC-SAFT). 2. Liquidâ^'Liquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems. Industrial & Engineering Chemistry Research. 2008. 47. 5651-5659.	3.7	68
42	Thirty Years with EoS/G ^E Models—What Have We Learned?. Industrial & Engineering Chemistry Research, 2012, 51, 4119-4142.	3.7	68
43	Application of the van der Waals equation of state to polymers. Fluid Phase Equilibria, 1994, 96, 65-92.	2.5	64
44	Investigating Models for Associating Fluids Using Spectroscopy. Industrial & Engineering Chemistry Research, 2006, 45, 5368-5374.	3.7	62
45	Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State. Energy & Fuels, 2016, 30, 6835-6852.	5.1	62
46	Application of COSMO-RS and UNIFAC for ionic liquids based gas separation. Chemical Engineering Science, 2018, 192, 816-828.	3.8	61
47	Modeling vapor–liquid interfaces with the gradient theory in combination with the CPA equation of state. Fluid Phase Equilibria, 2005, 228-229, 479-485.	2.5	59
48	Group Contribution Based Estimation Method for Properties of Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 4277-4292.	3.7	59
49	Application of the perturbed chain SAFT equation of state to complex polymer systems using simplified mixing rules. Fluid Phase Equilibria, 2004, 215, 71-78.	2.5	58
50	Applying Association Theories to Polar Fluids. Industrial & Engineering Chemistry Research, 2004, 43, 1803-1806.	3.7	58
51	Approach to Improve Speed of Sound Calculation within PC-SAFT Framework. Industrial & Engineering Chemistry Research, 2012, 51, 14903-14914.	3.7	58
52	A multi-layered view of chemical and biochemical engineering. Chemical Engineering Research and Design, 2020, 155, A133-A145.	5.6	58
53	Capabilities, limitations and challenges of a simplified PC-SAFT equation of state. Fluid Phase Equilibria, 2006, 241, 344-353.	2.5	56
54	High-pressure vapor–liquid equilibria of systems containing ethylene glycol, water and methane. Fluid Phase Equilibria, 2007, 251, 52-58.	2.5	56

#	Article	IF	CITATIONS
55	Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 2015, 400, 8-19.	2.5	56
56	Application of the CPA equation of state to organic acids. Fluid Phase Equilibria, 2004, 225, 107-113.	2.5	55
57	Use of monomer fraction data in the parametrization of association theories. Fluid Phase Equilibria, 2010, 296, 219-229.	2.5	55
58	Novel Method for Estimating Pure-Component Parameters for Polymers:  Application to the PC-SAFT Equation of State. Industrial & Engineering Chemistry Research, 2004, 43, 2830-2838.	3.7	54
59	Liquidâ ``Liquid Equilibria for Glycols + Hydrocarbons:  Data and Correlation. Journal of Chemical & Engineering Data, 2002, 47, 169-173.	1.9	53
60	Vapor–liquid, liquid–liquid and vapor–liquid–liquid equilibrium of binary and multicomponent systems with MEG. Fluid Phase Equilibria, 2006, 249, 67-74.	2.5	53
61	Vapor–Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling. Journal of Chemical & Engineering Data, 2014, 59, 961-967.	1.9	53
62	Modeling of Dielectric Properties of Complex Fluids with an Equation of State. Journal of Physical Chemistry B, 2013, 117, 3389-3397.	2.6	52
63	Prediction of solid–gas equilibria with the Peng–Robinson equation of state. Journal of Supercritical Fluids, 2003, 25, 197-212.	3.2	50
64	Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals. Fluid Phase Equilibria, 2009, 276, 75-85.	2.5	50
65	Equations of state: From the ideas of van der Waals to association theories. Journal of Supercritical Fluids, 2010, 55, 421-437.	3.2	50
66	Liquidâ^'Liquid Equilibria for Binary and Ternary Systems Containing Glycols, Aromatic Hydrocarbons, and Water:  Experimental Measurements and Modeling with the CPA EoS. Journal of Chemical & Engineering Data, 2006, 51, 977-983.	1.9	49
67	Taking Another Look at the van der Waals Equation of State–Almost 150 Years Later. Journal of Chemical & Engineering Data, 2019, 64, 4619-4637.	1.9	48
68	Thermodynamic Modeling of Acidic Gas Solubility in Aqueous Solutions of MEA, MDEA and MEAâ^'MDEA Blends. Industrial & Engineering Chemistry Research, 2006, 45, 5148-5154.	3.7	46
69	Modeling the Phase Behavior in Mixtures of Pharmaceuticals with Liquid or Supercritical Solvents. Journal of Physical Chemistry B, 2009, 113, 6446-6458.	2.6	46
70	Application of PC-SAFT to glycol containing systems – PC-SAFT towards a predictive approach. Fluid Phase Equilibria, 2007, 261, 248-257.	2.5	45
71	Comparison of the SRK and CPA equations of state for physical properties of water and methanol. Fluid Phase Equilibria, 2006, 247, 149-157.	2.5	44
72	Prediction of Liquid-Liquid Equilibrium for Binary Polymer Solutions with Simple Activity Coefficient Models. Industrial & Engineering Chemistry Research, 1995, 34, 1823-1834.	3.7	43

Georgios M Kontogeorgis

#	Article	IF	CITATIONS
73	Prediction and Correlation of High-Pressure Gas Solubility in Polymers with Simplified PC-SAFT. Industrial & Engineering Chemistry Research, 2005, 44, 3330-3335.	3.7	43
74	Modeling Systems Containing Alkanolamines with the CPA Equation of State. Industrial & Engineering Chemistry Research, 2008, 47, 7441-7446.	3.7	43
75	Absorber Model for CO ₂ Capture by Monoethanolamine. Industrial & Engineering Chemistry Research, 2010, 49, 3751-3759.	3.7	43
76	Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications. A critical review. Chemical Engineering Journal, 1997, 66, 35-49.	12.7	42
77	Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems. Fluid Phase Equilibria, 2005, 228-229, 121-126.	2.5	42
78	Extension of the Cubic-plus-Association (CPA) Equation of State to Amines. Industrial & Engineering Chemistry Research, 2005, 44, 4406-4413.	3.7	42
79	Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state. Fluid Phase Equilibria, 2013, 360, 222-232.	2.5	42
80	Improved models for the prediction of activity coefficients in nearly athermal mixtures. Fluid Phase Equilibria, 1994, 92, 35-66.	2.5	40
81	Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives. Carbohydrate Polymers, 2012, 87, 444-451.	10.2	40
82	Capabilities and Limitations of Predictive Engineering Theories for Multicomponent Adsorption. Industrial & Engineering Chemistry Research, 2013, 52, 11552-11563.	3.7	39
83	Adsorption of Amylase Enzyme on Ultrafiltration Membranes. Langmuir, 2007, 23, 9341-9351.	3.5	38
84	Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2009, 48, 5472-5480.	3.7	38
85	Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method. Industrial & Engineering Chemistry Research, 2013, 52, 12236-12246.	3.7	38
86	On petroleum fluid characterization with the PC-SAFT equation of state. Fluid Phase Equilibria, 2014, 375, 254-268.	2.5	38
87	A density gradient theory based method for surface tension calculations. Fluid Phase Equilibria, 2016, 428, 153-163.	2.5	38
88	Application of the Simplified PC-SAFT Equation of State to the Vaporâ^'Liquid Equilibria of Binary and Ternary Mixtures of Polyamide 6 with Several Solvents. Industrial & Engineering Chemistry Research, 2004, 43, 826-834.	3.7	36
89	Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR. Fluid Phase Equilibria, 2006, 243, 74-91.	2.5	36
90	Modelling of associating mixtures for applications in the oil & gas and chemical industries. Fluid Phase Equilibria, 2007, 261, 205-211.	2.5	36

#	Article	IF	CITATIONS
91	Integrated ionic liquid and process design involving azeotropic separation processes. Chemical Engineering Science, 2019, 203, 402-414.	3.8	36
92	Measurement and modelling of hydrogen bonding in 1-alkanol+n-alkane binary mixtures. Fluid Phase Equilibria, 2007, 261, 272-280.	2.5	35
93	Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state. Fluid Phase Equilibria, 2016, 408, 151-169.	2.5	35
94	Application of the LCVM model to systems containing organic compounds and supercritical carbon dioxide. Journal of Supercritical Fluids, 1996, 9, 88-98.	3.2	34
95	Modeling the solid–liquid equilibrium in pharmaceuticalâ€solvent mixtures: Systems with complex hydrogen bonding behavior. AICHE Journal, 2009, 55, 756-770.	3.6	34
96	Association theories for complex thermodynamics. Chemical Engineering Research and Design, 2013, 91, 1840-1858.	5.6	34
97	Structure optimization of tailored ionic liquids and process simulation for shale gas separation. AICHE Journal, 2020, 66, e16794.	3.6	34
98	Liquidâ^'Liquid Equilibria for Binary and Ternary Polymer Solutions with PC-SAFT. Industrial & Engineering Chemistry Research, 2004, 43, 1125-1132.	3.7	33
99	Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation Using the Cubic-Plus-Association Equation of State. Energy & amp; Fuels, 2016, 30, 3560-3574.	5.1	33
100	Hydrate equilibrium data for the CO2Â+ÂN2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture. Fluid Phase Equilibria, 2016, 408, 240-247.	2.5	33
101	An interpretation of the behavior of EoS/GE models for asymmetric systems. Chemical Engineering Science, 2000, 55, 2351-2358.	3.8	32
102	A novel approach to liquid–liquid equilibrium in polymer systems with application to simplified PC-SAFT. Fluid Phase Equilibria, 2004, 222-223, 87-93.	2.5	32
103	Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state. Fluid Phase Equilibria, 2010, 288, 128-138.	2.5	32
104	Pitfalls of using the geometric-mean combining rule in the density gradient theory. Fluid Phase Equilibria, 2016, 415, 75-83.	2.5	32
105	Application of the van der Waals equation of state to polymers. Fluid Phase Equilibria, 1994, 96, 93-117.	2.5	31
106	Phase Equilibrium Modelling for Mixtures with Acetic Acid Using an Association Equation of State. Industrial & Engineering Chemistry Research, 2008, 47, 5660-5668.	3.7	31
107	Gas Adsorption and Interfacial Tension with Classical Density Functional Theory. Industrial & Engineering Chemistry Research, 2019, 58, 5650-5664.	3.7	31
108	Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems—Capabilities and limitations. Fluid Phase Equilibria, 2009, 281, 70-77.	2.5	30

#	Article	IF	CITATIONS
109	Gas Solubility in Ionic Liquids: UNIFAC-IL Model Extension. Industrial & Engineering Chemistry Research, 2020, 59, 16805-16821.	3.7	30
110	Dimerization of Carboxylic Acids: An Equation of State Approach. Journal of Physical Chemistry B, 2017, 121, 2153-2163.	2.6	29
111	Equations of state and activity coefficient models for vapor-liquid equilibria of polymer solutions. AICHE Journal, 1994, 40, 1711-1727.	3.6	28
112	Improved models for the prediction of activity coefficients in nearly athermal mixtures Part II. A theoretically-based GE-model based on the van der Waals partition function. Fluid Phase Equilibria, 1997, 127, 103-121.	2.5	28
113	An improved entropic expression for polymer solutions. Fluid Phase Equilibria, 2002, 202, 325-335.	2.5	28
114	Potential Theory of Adsorption for Associating Mixtures: Possibilities and Limitations. Industrial & Engineering Chemistry Research, 2013, 52, 2672-2684.	3.7	28
115	A Review of Electrolyte Equations of State with Emphasis on Those Based on Cubic and Cubic-Plus-Association (CPA) Models. International Journal of Thermophysics, 2022, 43, 1.	2.1	28
116	Application of the van der Waals equation of state to polymers III. Correlation and prediction of upper critical solution temperatures for polymer solutions. Fluid Phase Equilibria, 1994, 100, 63-102.	2.5	27
117	Application of the van der Waals equation of state to polymers IV. Correlation and prediction of lower critical solution temperatures for polymer solutions. Fluid Phase Equilibria, 1996, 115, 73-93.	2.5	27
118	Thermodynamics of paint-related systems with engineering models. AICHE Journal, 2001, 47, 2573-2584.	3.6	27
119	Approach Suitable for Screening Estimation Methods for Critical Properties of Heavy Compounds. Industrial & Engineering Chemistry Research, 2006, 45, 476-480.	3.7	27
120	Analysis and applications of a group contribution sPC-SAFT equation of state. Fluid Phase Equilibria, 2009, 281, 60-69.	2.5	27
121	eCPA: An ion-specific approach to parametrization. Fluid Phase Equilibria, 2018, 470, 176-187.	2.5	27
122	Analysis of Some Electrolyte Models Including Their Ability to Predict the Activity Coefficients of Individual Ions. Industrial & Engineering Chemistry Research, 2020, 59, 11790-11809.	3.7	27
123	On the estimation of water pure compound parameters in association theories. Molecular Physics, 2007, 105, 1797-1801.	1.7	26
124	Adhesion between coating layers based on epoxy and silicone. Journal of Colloid and Interface Science, 2007, 316, 678-686.	9.4	26
125	Modeling of the Thermodynamics of the Acetic Acidâ 'Water Mixture Using the Cubic-Plus-Association Equation of State. Industrial & amp; Engineering Chemistry Research, 2011, 50, 5795-5805.	3.7	26
126	Experimental study and phase equilibrium modeling of systems containing acid gas and glycol. Fluid Phase Equilibria, 2012, 318, 40-50.	2.5	26

#	Article	IF	CITATIONS
127	A novel method for investigating the repulsive and attractive parts of cubic equations of state and the combining rules used with the vdW-1f theory. Chemical Engineering Science, 1998, 53, 541-552.	3.8	25
128	General Form of the Cross-Energy Parameter of Equations of State. Industrial & Engineering Chemistry Research, 2000, 39, 3076-3082.	3.7	25
129	Modeling the vapor–liquid equilibria of polymer–solvent mixtures: Systems with complex hydrogen bonding behavior. Fluid Phase Equilibria, 2009, 280, 100-109.	2.5	25
130	Computer-aided design of ionic liquids for hybrid process schemes. Computers and Chemical Engineering, 2019, 130, 106556.	3.8	25
131	Separation of NH3/CO2 from melamine tail gas with ionic liquid: Process evaluation and thermodynamic properties modelling. Separation and Purification Technology, 2021, 274, 119007.	7.9	25
132	Intramolecular association within the SAFT framework. Molecular Physics, 2011, 109, 1759-1769.	1.7	24
133	Thermodynamic Modeling of Natural Gas Systems Containing Water. Industrial & Engineering Chemistry Research, 2013, 52, 3499-3513.	3.7	24
134	Modeling of Asphaltene Precipitation from Crude Oil with the Cubic Plus Association Equation of State. Energy & Fuels, 2017, 31, 2063-2075.	5.1	24
135	Good reporting practice for thermophysical and thermochemical property measurements (IUPAC) Tj ETQq1 1 0.7	84314 rgE	3T /Overloc <mark>k</mark> 24
136	Water structure, properties and some applications – A review. Chemical Thermodynamics and Thermal Analysis, 2022, 6, 100053.	1.5	24
137	Modeling the Liquidâ^'Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2007, 46, 1415-1420.	3.7	23
138	Towards predictive association theories. Fluid Phase Equilibria, 2011, 301, 244-256.	2.5	23
139	New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research, 2015, 54, 1373-1384.	3.7	23
140	Modeling systems relevant to the biodiesel production using the CPA equation of state. Fluid Phase Equilibria, 2016, 430, 75-92.	2.5	23
141	Improvement of the PR-CPA equation of state for modelling of acid gases solubilities in aqueous alkanolamine solutions. Fluid Phase Equilibria, 2018, 471, 74-87.	2.5	23
142	Modeling of Gas Solubility Using the Electrolyte Cubic Plus Association Equation of State. Industrial & Engineering Chemistry Research, 2019, 58, 17555-17567.	3.7	23
143	Miscibility of polymer blends with engineering models. AICHE Journal, 1996, 42, 3170-3180.	3.6	22
144	Modeling of multicomponent vapor–liquid equilibria for polymer–solvent systems. Fluid Phase Equilibria, 2004, 220, 11-20.	2.5	22

#	Article	IF	CITATIONS
145	GC-PPC-SAFT Equation of State for VLE and LLE of Hydrocarbons and Oxygenated Compounds. Sensitivity Analysis. Industrial & Engineering Chemistry Research, 2013, 52, 7014-7029.	3.7	22
146	Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO ₂ Transport. Journal of Chemical & Engineering Data, 2014, 59, 2955-2972.	1.9	22
147	Modeling the liquid–liquid equilibrium of petroleum fluid and polar compounds containing systems with the PC-SAFT equation of state. Fluid Phase Equilibria, 2015, 406, 147-155.	2.5	22
148	A group contribution-based prediction method for the electrical conductivity of ionic liquids. Fluid Phase Equilibria, 2020, 509, 112462.	2.5	22
149	Application of Simplified PC-SAFT to Glycol Ethers. Industrial & Engineering Chemistry Research, 2012, 51, 547-555.	3.7	21
150	Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State. Industrial & Engineering Chemistry Research, 2014, 53, 11766-11778.	3.7	21
151	Sustainable solutions by integrating process synthesis-intensification. Computers and Chemical Engineering, 2019, 126, 499-519.	3.8	21
152	Assessment of Activity Coefficient Models for Predicting Solidâ 'Liquid Equilibria of Asymmetric Binary Alkane Systems. Industrial & Engineering Chemistry Research, 1999, 38, 316-323.	3.7	20
153	Prediction of Micelle Formation for Aqueous Polyoxyethylene Alcohol Solutions with the UNIFAC Model. Industrial & Engineering Chemistry Research, 2002, 41, 892-898.	3.7	20
154	Modelling of phase equilibria of glycol ethers mixtures using an association model. Fluid Phase Equilibria, 2008, 273, 11-20.	2.5	20
155	Phase Equilibria of Mixtures Containing Glycol and n-Alkane: Experimental Study of Infinite Dilution Activity Coefficients and Modeling Using the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2009, 48, 11202-11210.	3.7	20
156	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. Fluid Phase Equilibria, 2015, 397, 1-17.	2.5	20
157	A comment on water's structure using monomer fraction data and theories. Fluid Phase Equilibria, 2016, 407, 2-6.	2.5	20
158	Predicting activity coefficients with the <scp>Debye–Hückel</scp> theory using concentration dependent static permittivity. AICHE Journal, 2020, 66, e16651.	3.6	20
159	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. Journal of Supercritical Fluids, 2015, 104, 29-39.	3.2	19
160	A collocation method for surface tension calculations with the density gradient theory. Fluid Phase Equilibria, 2016, 408, 170-179.	2.5	19
161	Prediction of Gas Injection Effect on Asphaltene Precipitation Onset Using the Cubic and Cubic-Plus-Association Equations of State. Energy & amp; Fuels, 2017, 31, 3313-3328.	5.1	19
162	A review of computer-aided design of paints and coatings. Current Opinion in Chemical Engineering, 2020, 27, 107-120.	7.8	19

#	Article	IF	CITATIONS
163	Modeling of Gas Solubility in Aqueous Electrolyte Solutions with the eSAFT-VR Mie Equation of State. Industrial & Engineering Chemistry Research, 2021, 60, 15327-15342.	3.7	19
164	Importance of the Relative Static Permittivity in electrolyte SAFT-VR Mie Equations of State. Fluid Phase Equilibria, 2022, 551, 113256.	2.5	19
165	Application of Group Contribution Models to the Calculation of the Octanolâ^'Water Partition Coefficient. Industrial & Engineering Chemistry Research, 2001, 40, 434-443.	3.7	18
166	An Explanation of the Selective Plating of Laser Machined Surfaces Using Surface Tension Components. Journal of Adhesion Science and Technology, 2011, 25, 2101-2111.	2.6	18
167	Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents. Industrial & Engineering Chemistry Research, 2012, 51, 13496-13517.	3.7	18
168	Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS. Fluid Phase Equilibria, 2013, 337, 298-310.	2.5	18
169	Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water. Fluid Phase Equilibria, 2014, 372, 113-125.	2.5	18
170	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO 2 transport applications. Journal of Chemical Thermodynamics, 2016, 93, 305-319.	2.0	18
171	Distinguishing Weak and Strong Hydrogen Bonds in Liquid Water—A Potential of Mean Force-Based Approach. Journal of Physical Chemistry B, 2021, 125, 7187-7198.	2.6	18
172	Machine learning for the prediction of viscosity of ionic liquid–water mixtures. Journal of Molecular Liquids, 2022, 350, 118546.	4.9	18
173	Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling. Molecular Simulation, 2007, 33, 851-860.	2.0	17
174	Mutual solubility of MEG, water and reservoir fluid: Experimental measurements and modeling using the CPA equation of state. Fluid Phase Equilibria, 2011, 300, 172-181.	2.5	17
175	Modeling of phase equilibria with CPA using the homomorph approach. Fluid Phase Equilibria, 2011, 301, 1-12.	2.5	17
176	A Systematic Methodology for Design of Emulsion Based Chemical Products. Computer Aided Chemical Engineering, 2012, 31, 220-224.	0.5	17
177	Simultaneous Description of Activity Coefficients and Solubility with eCPA. Industrial & Engineering Chemistry Research, 2017, 56, 1074-1089.	3.7	17
178	Modeling Tetra-n-butyl ammonium halides aqueous solutions with the electrolyte cubic plus association equation of state. Fluid Phase Equilibria, 2019, 486, 37-47.	2.5	17
179	Thermodynamic modeling of gas solubility in aqueous solutions of quaternary ammonium salts with the e-CPA equation of state. Fluid Phase Equilibria, 2020, 507, 112423.	2.5	17
180	A modified free-volume-based model for predicting vapor–liquid and solid–liquid equilibria for size asymmetric systems. Fluid Phase Equilibria, 2005, 234, 94-100.	2.5	16

#	Article	IF	CITATIONS
181	Classical and recent free-volume models for polymer solutions: A comparative evaluation. Fluid Phase Equilibria, 2007, 257, 63-69.	2.5	16
182	The role of monomer fraction data in association theories—Can we improve the performance for phase equilibrium calculations?. Fluid Phase Equilibria, 2014, 365, 112-122.	2.5	16
183	Ternary Vapor–Liquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa. Journal of Chemical & Engineering Data, 2018, 63, 1789-1796.	1.9	16
184	New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis. Fluid Phase Equilibria, 2018, 458, 211-233.	2.5	16
185	Heat Capacities of Fluids: The Performance of Various Equations of State. Journal of Chemical & Engineering Data, 2020, 65, 5654-5676.	1.9	16
186	Method for Estimating Critical Properties of Heavy Compounds Suitable for Cubic Equations of State and Its Application to the Prediction of Vapor Pressures. Industrial & Engineering Chemistry Research, 1997, 36, 4008-4012.	3.7	15
187	Prediction of Ternary Liquidâ^'Liquid Equilibria in Polymerâ^'Solventâ^'Solvent Systems. Industrial & Engineering Chemistry Research, 1997, 36, 5461-5466.	3.7	15
188	Phase equilibria for complex polymer solutions. Fluid Phase Equilibria, 2002, 194-197, 663-673.	2.5	15
189	Prediction of gas solubilities in elastomeric polymers for the design of thermopane windows. Fluid Phase Equilibria, 2003, 211, 17-33.	2.5	15
190	Correlation and Prediction of Environmental Properties of Alcohol Ethoxylate Surfactants Using the UNIFAC Method. Industrial & Engineering Chemistry Research, 2005, 44, 7255-7261.	3.7	15
191	Cubic Plus Association Equation of State for Flow Assurance Projects. Industrial & Engineering Chemistry Research, 2015, 54, 6812-6824.	3.7	15
192	Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models. Journal of Chemical & Engineering Data, 2017, 62, 2592-2605.	1.9	15
193	Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of <i>n</i> -Alkanes and Methane/ <i>n</i> -Alkane Mixtures. Journal of Chemical & Engineering Data, 2018, 63, 981-993.	1.9	15
194	Modeling Hydrofluoroolefins with the Cubic Plus Association and Perturbed-Chain Statistical Associating Fluid Theory Equations of State. Industrial & Engineering Chemistry Research, 2018, 57, 17289-17300.	3.7	15
195	An Integrated Approach for the Design of Emulsified Products. AICHE Journal, 2019, 65, 75-86.	3.6	15
196	Estimating Hansen solubility parameters of organic pigments by group contribution methods. Chinese Journal of Chemical Engineering, 2021, 31, 186-197.	3.5	15
197	Introduction to Computer Aided Property Estimation. Computer Aided Chemical Engineering, 2004, 19, 3-26.	0.5	14
198	Measurement of Liquid–Liquid Equilibria for Condensate + Glycol and Condensate + Glycol + Water Systems. Journal of Chemical & Engineering Data, 2011, 56, 4342-4351.	1.9	14

#	Article	IF	CITATIONS
199	Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS. Fluid Phase Equilibria, 2013, 340, 1-6.	2.5	14
200	Extensive Study of the Capabilities and Limitations of the CPA and sPC-SAFT Equations of State in Modeling a Wide Range of Acetic Acid Properties. Industrial & Engineering Chemistry Research, 2018, 57, 5690-5704.	3.7	14
201	Evaluating the Performance of the PC-SAFT and CPA Equations of State on Anomalous Properties of Water. Journal of Chemical & Engineering Data, 2020, 65, 5718-5734.	1.9	14
202	Investigation of the performance of e-CPA for a wide range of properties for aqueous NaCl solutions. Fluid Phase Equilibria, 2021, 548, 113167.	2.5	14
203	A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area. Fluid Phase Equilibria, 1997, 140, 145-156.	2.5	13
204	Modeling of the migration of glycerol monoester plasticizers in highly plasticized poly(vinyl) Tj ETQq0 0 0 rgBT /C	Overlock 10) Tf _. 50 542 T 13
205	Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena. Fluid Phase Equilibria, 2017, 437, 140-154.	2.5	13
206	Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 7652-7666.	6.7	13
207	Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar Cubic-Plus-Association Equation of State. ACS Sustainable Chemistry and Engineering, 2021, 9, 7602-7619.	6.7	13
208	An analysis of the parameters in the Debye-Hückel theory. Fluid Phase Equilibria, 2022, 556, 113398.	2.5	13
209	Structural characteristics of low-density environments in liquid water. Physical Review E, 2022, 105, 034604.	2.1	13
210	Selective oxidation of benzyl alcohol in dense CO2: Insight by phase behavior modeling. Journal of Supercritical Fluids, 2012, 63, 199-207.	3.2	12
211	On the predictive capabilities of CPA for applications in the chemical industry: Multicomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid. Chemical Engineering Research and Design, 2014, 92, 2947-2969.	5.6	12
212	Uncertainty analysis of the CPA and a quadrupolar CPA equation of state – With emphasis on CO2. Fluid Phase Equilibria, 2016, 414, 29-47.	2.5	12
213	Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems. Energy Procedia, 2017, 129, 160-167.	1.8	12
214	Effect of the Composition of Biomass on the Quality of Syngas Produced from Thermochemical Conversion Based on Thermochemical Data Prediction. Energy & Fuels, 2019, 33, 5253-5262.	5.1	12
215	Modeling the phase behaviour of bitumen/n-alkane systems with the cubic plus association (CPA) equation of state. Fluid Phase Equilibria, 2019, 486, 119-138.	2.5	12
216	Comparison of Models for the Prediction of the Electrical Conductivity of Electrolyte Solutions. Industrial & Engineering Chemistry Research, 2022, 61, 3168-3185.	3.7	12

#	Article	IF	CITATIONS
217	Investigation of the Limits of the Linearized Poisson–Boltzmann Equation. Journal of Physical Chemistry B, 2022, 126, 4112-4131.	2.6	12
218	Experimental determination and modeling of the phase behavior for the selective oxidation of benzyl alcohol in supercritical CO2. Fluid Phase Equilibria, 2011, 302, 83-92.	2.5	11
219	Evaluation of the Cubic-Plus-Association Equation of State for Ternary, Quaternary, and Multicomponent Systems in the Presence of Monoethylene Glycol. Industrial & Engineering Chemistry Research, 2016, 55, 11371-11382.	3.7	11
220	Systematic identification method for data analysis and phase equilibria modelling for lipids systems. Journal of Chemical Thermodynamics, 2018, 121, 153-169.	2.0	11
221	Towards a predictive Cubic Plus Association equation of state. Fluid Phase Equilibria, 2021, 540, 113045.	2.5	11
222	Modelling study on phase equilibria behavior of ionic liquid-based aqueous biphasic systems. Chemical Engineering Science, 2022, 247, 116904.	3.8	11
223	On the derivations of the Debyeâ \in Hückel equations. Molecular Physics, 2022, 120, .	1.7	11
224	A molecular simulation-based method for the estimation of activity coefficients for alkane solutions. Chemical Engineering Science, 1996, 51, 3247-3255.	3.8	10
225	Thermodynamic modeling of the solubility of CO2 in aqueous alkanolamine solutions using the extended UNIQUAC model application to monoethanolamine and methyldiethanolamine. Energy Procedia, 2009, 1, 861-867.	1.8	10
226	Application of association models to mixtures containing alkanolamines. Fluid Phase Equilibria, 2011, 306, 31-37.	2.5	10
227	Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide. Journal of Chemical & Engineering Data, 2012, 57, 896-901.	1.9	10
228	Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium. Journal of Supercritical Fluids, 2013, 82, 106-115.	3.2	10
229	Distribution of Gas Hydrate Inhibitor Monoethylene Glycol in Condensate and Water Systems: Experimental Measurement and Thermodynamic Modeling Using the Cubic-Plus-Association Equation of State. Energy & Fuels, 2014, 28, 3530-3538.	5.1	10
230	Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology. Fluid Phase Equilibria, 2018, 470, 249-258.	2.5	10
231	Group Contribution Method to Estimate the Biodegradability of Organic Compounds. Industrial & Engineering Chemistry Research, 2020, 59, 20916-20928.	3.7	10
232	A new study of associating inhomogeneous fluids with classical density functional theory. Molecular Physics, 2020, 118, e1725668.	1.7	10
233	Ionic-Liquid-Based Bioisoprene Recovery Process Design. Industrial & Engineering Chemistry Research, 2020, 59, 7355-7366.	3.7	10
234	Ionic liquidâ€based in situ product removal design exemplified for an acetone–butanol–ethanol fermentation. Biotechnology Progress, 2021, 37, e3183.	2.6	10

#	Article	IF	CITATIONS
235	Optimal Aqueous Biphasic Systems Design for the Recovery of Ionic Liquids. Industrial & Engineering Chemistry Research, 2021, 60, 15730-15740.	3.7	10
236	Correlation and prediction of Henry constants for liquids and gases in five industrially important polymers using a CS-type correlation based on the van der Waals equation of state. Comparison with other predictive models. Fluid Phase Equilibria, 1995, 113, 79-102.	2.5	9
237	Analysis and application of GCPlus models for property prediction of organic chemical systems. Fluid Phase Equilibria, 2011, 302, 274-283.	2.5	9
238	Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water, 1-Propanethiol + Methane + Water and 1-Butanethiol + Methane + Water Ternary Systems at 303, 335, and 365 K and Pressure Up to 9 MPa. Industrial & Engineering Chemistry Research, 2013, 52, 14698-14705.	3.7	9
239	Measurement of vapor–liquid–liquid phase equilibrium—Equipment and results. Fluid Phase Equilibria, 2015, 405, 88-95.	2.5	9
240	Multicomponent Adsorption Model for Polar and Associating Mixtures. Industrial & Engineering Chemistry Research, 2015, 54, 3039-3050.	3.7	9
241	Hydrate Equilibrium Data for CO ₂ +N ₂ System in the Presence of Tetra- <i>n</i> -butylammonium Fluoride (TBAF) and Mixture of TBAF and Cyclopentane (CP). Journal of Chemical & Engineering Data, 2016, 61, 1007-1011.	1.9	9
242	Multicomponent Vapor–Liquid Equilibrium Measurement and Modeling of Ethylene Glycol, Water, and Natural Gas Mixtures at 6 and 12.5 MPa. Journal of Chemical & Engineering Data, 2018, 63, 3628-3639.	1.9	9
243	New association schemes for tri-ethylene glycol. Fluid Phase Equilibria, 2022, 551, 113254.	2.5	9
244	Phase Equilibria of Mixtures Containing Organic Sulfur Species (OSS) and Water/Hydrocarbons: VLE Measurements and Modeling Using the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research, 2010, 49, 12718-12725.	3.7	8
245	Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K. Industrial & Engineering Chemistry Research, 2012, 51, 11561-11564.	3.7	8
246	Process Analysis of Shea Butter Solvent Fractionation Using a Generic Systematic Approach. Industrial & Engineering Chemistry Research, 2020, 59, 9152-9164.	3.7	8
247	Equations of state in three centuries. Are we closer to arriving to a single model for all applications?. Chemical Engineering Science: X, 2020, 7, 100060.	1.5	8
248	Water–Hydrocarbon Phase Equilibria with SAFT-VR Mie Equation of State. Industrial & Engineering Chemistry Research, 2021, 60, 5278-5299.	3.7	8
249	Chain length dependence of the critical density of organic homologous series. Fluid Phase Equilibria, 1995, 108, 47-58.	2.5	7
250	Comments on "Predictions of Activity Coefficients of Nearly Athermal Binary Mixtures Using Cubic Equations of State― Industrial & Engineering Chemistry Research, 2005, 44, 3374-3375.	3.7	7
251	The Virtual Product-Process Design Laboratory for Structured Chemical Product Design and Analysis. Computer Aided Chemical Engineering, 2014, , 61-66.	0.5	7
252	Development and analysis of the Original UNIFAC-CI model for prediction of vapor–liquid and solid–liquid equilibria. Fluid Phase Equilibria, 2014, 366, 24-44.	2.5	7

#	Article	IF	CITATIONS
253	Modeling MEA with the CPA equation of state: A parameter estimation study adding local search to PSO algorithm. Fluid Phase Equilibria, 2015, 400, 76-86.	2.5	7
254	Integrated Ionic Liquid and Process Design involving Hybrid Separation Schemes. Computer Aided Chemical Engineering, 2018, 44, 1045-1050.	0.5	7
255	Recent advances with association models for practical applications. Molecular Physics, 2018, 116, 1921-1944.	1.7	7
256	A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 2020, 140, 105471.	3.9	7
257	Comparison of Two Types of Crossover Soave–Redlich–Kwong Equations of State for Derivative Properties of <i>n</i> -Alkanes. Industrial & Engineering Chemistry Research, 2020, 59, 9265-9278.	3.7	7
258	Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide. Applied Catalysis A: General, 2012, 443-444, 67-75.	4.3	6
259	Comparison of two crossover procedures for describing thermodynamic behavior of normal alkanes from singular critical to regular classical regions. Fluid Phase Equilibria, 2019, 495, 33-46.	2.5	6
260	A computational tool for parameter estimation in EoS: New methodologies and natural gas phase equilibria calculations. Chemical Engineering Science, 2020, 215, 115437.	3.8	6
261	Modeling the Critical and Phase Equilibrium Properties of Pure Fluids and Mixtures with the Crossover Cubic-Plus-Association Equation of State. Journal of Chemical & Engineering Data, 2020, 65, 1095-1107.	1.9	6
262	On the study of the vapor-liquid interface of associating fluids with classical density functional theory. Fluid Phase Equilibria, 2020, 522, 112744.	2.5	6
263	Application of Quantum Chemistry Insights to the Prediction of Phase Equilibria in Associating Systems. Industrial & Engineering Chemistry Research, 2021, 60, 5992-6005.	3.7	6
264	Computer-aided design of formulated products. Current Opinion in Colloid and Interface Science, 2022, 57, 101536.	7.4	6
265	Energy-efficient separation of propylene/propane by introducing a tailor-made ionic liquid solvent. Fuel, 2022, 326, 124930.	6.4	6
266	Henry constants in polymer solutions with the van der waals equation of state. Polymer Engineering and Science, 1996, 36, 254-261.	3.1	5
267	Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Supercritical Fluids, 2013, 84, 155-163.	3.2	5
268	Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology. Computer Aided Chemical Engineering, 2013, 32, 817-822.	0.5	5
269	Modeling Water Saturation Points in Natural Gas Streams Containing CO ₂ and H ₂ S—Comparisons with Different Equations of State. Industrial & Engineering Chemistry Research, 2015, 54, 743-757.	3.7	5
270	Methodology to Predict Thermodynamic Data from Spectroscopic Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 21548-21566.	3.7	5

#	Article	IF	CITATIONS
271	Matching the critical point of associating fluids with the Cubic Plus Association equation of state. Fluid Phase Equilibria, 2020, 526, 112674.	2.5	5
272	Computer-aided design and solvent selection for organic paint and coating formulations. Progress in Organic Coatings, 2022, 162, 106568.	3.9	5
273	Lipid Processing Technology: Building a Multilevel Modeling Network. Computer Aided Chemical Engineering, 2011, 29, 256-260.	0.5	4
274	Phase equilibrium of North Sea oils with polar chemicals: Experiments and CPA modeling. Fluid Phase Equilibria, 2016, 424, 122-136.	2.5	4
275	Piᠯ measurements and modelling of (n-decane + m-xylene) mixtures from 293.15 K to 363.15 K at pres up to 60 MPa. Journal of Chemical Thermodynamics, 2019, 135, 107-115.	sures 2.0	4
276	Solubility Modeling of Air in Aqueous Electrolyte Solutions with the e-CPA Equation of State. Industrial & Engineering Chemistry Research, 2020, 59, 18693-18704.	3.7	4
277	Developing group contribution models for the estimation of Atmospheric Lifetime and Minimum Ignition Energy. Chemical Engineering Science, 2020, 226, 115866.	3.8	4
278	Benchmarking of Separation Methods for Bioethanol (<5 wt %) Recovery. Industrial & Engineering Chemistry Research, 2021, 60, 5924-5944.	3.7	4
279	Rigorous Phase Equilibrium Calculation Methods for Strong Electrolyte Solutions: The Isothermal Flash. Fluid Phase Equilibria, 2022, 558, 113441.	2.5	4
280	A Comment on Guggenheim-like Hard-Core Volume Expressions. Industrial & Engineering Chemistry Research, 2002, 41, 4686-4688.	3.7	3
281	Comments on "Measurement and Modeling of the Solubility of Water in Supercritical Methane and Ethane from 310 to 477 K and Pressures from 3.4 to 110 MPa― Industrial & Engineering Chemistry Research, 2007, 46, 4347-4348.	3.7	3
282	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chain-Statistical Associating Fluid Theory (sPC-SAFT). 2. Liquidâ^'Liquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems. Industrial & Engineering Chemistry Research, 2009, 48, 7860-7860.	3.7	3
283	Characterization Scheme for Property Prediction of Fluid Fractions Originating from Biomass. Energy & Fuels, 2015, 29, 7230-7241.	5.1	3
284	Thermodynamics 2015 Conference Copenhagen, Denmark, 15–18 September 2015. Molecular Physics, 2016, 114, 2569-2573.	1.7	3
285	Modelling the phase equilibria of multicomponent mixtures containing CO ₂ , alkanes, water, and/or alcohols using the quadrupolar CPA equation of state. Molecular Physics, 2016, 114, 2641-2654.	1.7	3
286	Phase Equilibrium Measurements and Modeling of 1-Propanethiol +1-Butanethiol + CH ₄ in Methane Ternary System at 303, 336, and 368 K and Pressure Up to 9 MPa. Journal of Chemical & Engineering Data, 2016, 61, 41-44.	1.9	3
287	Integrated Solvent-Membrane and Process Design Method for Hybrid Reaction-Separation Schemes. Computer Aided Chemical Engineering, 2018, 43, 851-856.	0.5	3
288	Exergy efficiency based design and analysis of utilization pathways of biomasses. Computer Aided Chemical Engineering, 2018, 43, 857-862.	0.5	3

#	Article	IF	CITATIONS
289	Modeling systems relevant to the biodiesel production using the CPA equation of state. Part 2. Systems with supercritical CO2. Fluid Phase Equilibria, 2020, 504, 112337.	2.5	3
290	The Hansen Solubility Parameters (HSP) in Thermodynamic Models for Polymer Solutions. , 2007, , 75-94.		3
291	Computer-Aided Multifunctional Ionic Liquid Design for the Electrolyte in LTO Rechargeable Batteries. Journal of Physical Chemistry C, 2022, 126, 11498-11509.	3.1	3
292	Equations of State with Emphasis on Excess Gibbs Energy Mixing Rules. Computer Aided Chemical Engineering, 2004, , 75-111.	0.5	2
293	Chapter 14: Application of Property Models in Chemical Product Design. Computer Aided Chemical Engineering, 2004, , 339-369.	0.5	2
294	Partition coefficients of organic molecules in squalane and water/ethanol mixtures by molecular dynamics simulations. Fluid Phase Equilibria, 2011, 306, 162-170.	2.5	2
295	Modeling of phase equilibrium of North Sea oils with water and MEG. Fluid Phase Equilibria, 2016, 424, 79-89.	2.5	2
296	Phase envelope calculations of synthetic gas systems with a crossover equation of state. Journal of Supercritical Fluids, 2021, 173, 105222.	3.2	2
297	Thermodynamics of Polymer Solutions. , 2002, , .		2
298	Conclusions from Round Table Discussion during IUT of ESAT 2021 electrolyte thermodynamics challenges - From industrial needs to academic research. Fluid Phase Equilibria, 2022, 556, 113399.	2.5	2
299	Chapter 6: Association Models – The CPA Equation of State. Computer Aided Chemical Engineering, 2004, 19, 113-142.	0.5	1
300	Models for Polymer Solutions. Computer Aided Chemical Engineering, 2004, 19, 143-179.	0.5	1
301	Application of the CPA Equation of State to Reservoir Fluids in Presence of Water and Polar Chemicals. , 2007, , .		1
302	Re: A.H. Mohammadi and D. Richon on "Data and prediction of water content of high pressure nitrogen, methane and natural gas―[Fluid Phase Equilibria 252 (2007) 162–174]. Fluid Phase Equilibria, 2007, 255, 98.	2.5	1
303	Thermodynamics of Polymer Solutions. , 2015, , 199-246.		1
304	The Role of Chemical Engineering in Medicinal Research Including Alzheimer's. Advances in Experimental Medicine and Biology, 2015, 821, 57-62.	1.6	1
305	Solubility of Syngas Components in Water, Acetic Acid, and Alcohol Using New Standard Fugacity Methodology. Industrial & Engineering Chemistry Research, 2018, 57, 16958-16977.	3.7	1
306	Application of Uncertainty Analysis in the Design of Subsea Natural Gas Dehydration Units. , 2018, , .		1

#	Article	IF	CITATIONS
307	Design and Analysis of Edible Oil Processes Containing Lipids. Computer Aided Chemical Engineering, 2018, 43, 737-742.	0.5	1
308	High-pressure experimental vapour-liquid-liquid equilibrium measurements and modelling for natural gas processing: Equipment validation, and the system CH4+nC6H14+H2O. Fluid Phase Equilibria, 2019, 501, 112276.	2.5	1
309	High-pressure densities of n-decane+o-xylene mixtures: Measurement and modelling. Fluid Phase Equilibria, 2019, 498, 1-8.	2.5	1
310	Costa Tsonopoulos â \in " his legacy and some personal reflections on cubic equations of state and beyond. Fluid Phase Equilibria, 2021, 533, 112895.	2.5	1
311	Challenges and Opportunities for Property Modeling. Computer Aided Chemical Engineering, 2004, 19, 407-416.	0.5	0
312	Thermodynamics of Polymer Solutions. , 2008, , 499-537.		0
313	Chemicals in Gas Processing (CHIGP). , 2010, , 419-426.		Ο